Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gut Microbes ; 12(1): 1-16, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33054518

RESUMO

The commensal bacterium Faecalibacterium prausnitzii plays a key role in inflammatory bowel disease (IBD) pathogenesis and serves as a general health biomarker in humans. However, the host molecular mechanisms that underlie its anti-inflammatory effects remain unknown. In this study we performed a transcriptomic approach on human intestinal epithelial cells (HT-29) stimulated with TNF-α and exposed to F. prausnitzii culture supernatant (SN) in order to determine the impact of this commensal bacterium on intestinal epithelial cells. Moreover, modulation of the most upregulated gene after F. prausnitzii SN contact was validated both in vitro and in vivo. Our results showed that F. prausnitzii SN upregulates the expression of Dact3, a gene linked to the Wnt/JNK pathway. Interestingly, when we silenced Dact3 expression, the effect of F. prausnitzii SN was lost. Butyrate was identified as the F. prausnitzii effector responsible for Dact3 modulation. Dact3 upregulation was also validated in vivo in both healthy and inflamed mice treated with either F. prausnitzii SN or the live bacteria, respectively. Finally, we demonstrated by colon transcriptomics that gut microbiota directly influences Dact3 expression. This study provides new clues about the host molecular mechanisms involved in the anti-inflammatory effects of the beneficial commensal bacterium F. prausnitzii.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Butiratos/metabolismo , Faecalibacterium prausnitzii/fisiologia , Microbioma Gastrointestinal , Inflamação , Mucosa Intestinal/microbiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Colo/metabolismo , Colo/microbiologia , Perfilação da Expressão Gênica , Células HT29 , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Interleucina-8/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
3.
Environ Microbiol ; 21(11): 4020-4031, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31325218

RESUMO

Antimicrobial peptides secreted by intestinal immune and epithelial cells are important effectors of innate immunity. They play an essential role in the maintenance of intestinal homeostasis by limiting microbial epithelium interactions and preventing unnecessary microbe-driven inflammation. Pancreatitis-associated protein (PAP) belongs to Regenerating islet-derived III proteins family and is a C-type (Ca+2 dependent) lectin. PAP protein plays a protective effect presenting anti-inflammatory properties able to reduce the severity of colitis, preserving gut barrier and epithelial inflammation. Here, we sought to determine whether PAP delivered at intestinal lumen by recombinant Lactococcus lactis strain (LL-PAP) before and after chemically induced colitis is able to reduce the severity in two models of colitis. After construction and characterization of our recombinant strains, we tested their effects in dinitro-benzenesulfonic-acid (DNBS) and Dextran sulfate sodium (DSS) colitis model. After the DNBS challenge, mice treated with LL-PAP presented less severe colitis compared with PBS and LL-empty-treated mice groups. After the DSS challenge, no protective effects of LL-PAP could be detected. We determined that after 5 days administration, LL-PAP increase butyrate producer's bacteria, especially Eubacterium plexicaudatum. Based on our findings, we hypothesize that a treatment with LL-PAP shifts the microbiota preventing the severity of colon inflammation in DNBS colitis model. These protective roles of LL-PAP in DNBS colitis model might be through intestinal microbiota modulation.


Assuntos
Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Colite/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Lactococcus lactis/metabolismo , Proteínas Associadas a Pancreatite/uso terapêutico , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Benzenossulfonatos/toxicidade , Colite/induzido quimicamente , Colite/patologia , Colo/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas a Pancreatite/metabolismo , Peptídeos/metabolismo
4.
Front Microbiol ; 9: 3355, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30728820

RESUMO

Interleukin-17A (IL-17A) is a pro-inflammatory cytokine produced by TH17 cells that participates and contributes in host defense and autoimmune disease. We have recently reported antitumor properties of the probiotic strain of Lactobacillus casei BL23 in mice and TH17 cells was shown to play an important role in this beneficial effect. In order to better understand the role of IL-17A in cancer, we constructed a recombinant strain of Lactococcus lactis producing this cytokine and we determined its biological activity in: (i) a bioassay test for the induction of IL-6 production by murine fibroblasts 3T3 L1 cells line and (ii) in a mouse allograft model of human papilloma virus (HPV)-induced cancer. Our data show that recombinant L. lactis produces and efficiently secretes biologically active IL-17A cytokine. Interestingly, ∼26% of mice intranasally treated with L. lactis-IL-17A and challenged with TC-1 cells remained tumor free over the experiment, in contrast to control mice treated with the wild type strain of L. lactis which developed 100% of aggressive tumors. In addition, the median size of the ∼74% tumor-bearing mice treated with recombinant L. lactis-IL-17A, was significantly lower than mice treated with L. lactis-wt. Altogether, our results demonstrate that intranasal administration with L. lactis secreting IL-17A results in a partial protection against TC-1-induced tumors in mice, confirming antitumor effects of this cytokine in our cancer model.

5.
Front Microbiol ; 9: 3281, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687269

RESUMO

We have recently described antitumor properties of Lactobacillus casei BL23 strain in both a mouse allograft model of human papilloma virus (HPV)-induced cancer and dimethylhydrazine-associated colorectal cancer. However, the mechanisms underlying these beneficial effects are still unknown. Interestingly, in vitro cellular models show that this bacterium is able to stimulate the production of high levels of IL-2. Because this cytokine has well-known antitumor properties, we decided to explore its role in the anti-cancer effects of BL23 using the HPV-induced cancer model. We found a negative correlation between IL-2 and tumor size confirming the necessity of IL-2 to protect from tumor development. Then, we blocked IL-2 synthesis using neutralizing monoclonal antibodies in mice that were challenged with lethal levels of tumor cells; this led to a significant reduction in the protective abilities of BL23. Next, we used a genetically modified strain of Lactococcus lactis to deliver exogenous IL-2 to the system, and in doing so, we were able to partially mimic the antitumor properties of BL23. Additionally, we showed the systemic role of T-cells in tumor protection through a negative correlation between tumor size and T-cells subpopulations and an increasement of BL23-specific local Foxp3 levels in tumor-bearing mice. Finally, we observed a negative correlation between tumor size and NK+ cells, but local recruitment of NK cells and cytotoxic activity appeared specific to BL23 treatment. Taken together, our data suggest that IL-2 signaling pathway plays an important role in the anti-tumoral effects of probiotic strain L. casei BL23. These results encourage further investigation in the use of probiotic strains for potential therapeutic applications to clinical practice, in particular for the treatment of colorectal cancer. Furthermore, our approach could be extended and applied to other potential beneficial microorganisms, such as gut microbiota, in order to better understand the crosstalk between microbes and the host.

6.
Front Immunol ; 8: 1553, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209314

RESUMO

The gut microbiota plays a major role in intestinal health, and an imbalance in its composition can lead to chronic gut inflammation and a predisposition to developing colorectal cancer (CRC). Currently, the use of probiotic bacteria represents an emerging alternative to treat and prevent cancer. Moreover, consumption of these beneficial bacteria may also favorably modulate the composition of the gut microbiota, which has been described in several studies to play an important role in CRC carcinogenesis. In this context, the aim of this study was to assess the protective effect of oral treatment with Lactobacillus casei BL23, a probiotic strain well known for its anti-inflammatory and anticancer properties. First, CRC was induced in C57BL6 mice by a single intraperitoneal injection with azoxymethane (8 mg/kg), followed by four courses of dextran sodium sulfate (2.5%) in drinking water that were separated by an adjustable recovery period. At the time of sacrifice (day 46), tumor incidence, histological scores, and epithelial proliferation were determined in colon samples. Our results show that L. casei BL23 significantly protected mice against CRC development; specifically, L. casei BL23 treatment reduced histological scores and proliferative index values. In addition, our analysis revealed that L. casei BL23 had an immunomodulatory effect, mediated through the downregulation of the IL-22 cytokine, and an antiproliferative effect, mediated through the upregulation of caspase-7, caspase-9, and Bik. Finally, L. casei BL23 treatment tended to counterbalance CRC-induced dysbiosis in mice, as demonstrated by an analysis of fecal microbiota. Altogether our results demonstrate the high potential of L. casei BL23 for the development of new, probiotic-based strategies to fight CRC.

7.
Microb Cell Fact ; 16(1): 79, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28482838

RESUMO

The aim of this review is to summarize the effect in host energy metabolism of the production of B group vitamins and short chain fatty acids (SCFA) by commensal, food-grade and probiotic bacteria, which are also actors of the mammalian nutrition. The mechanisms of how these microbial end products, produced by these bacterial strains, act on energy metabolism will be discussed. We will show that these vitamins and SCFA producing bacteria could be used as tools to recover energy intakes by either optimizing ATP production from foods or by the fermentation of certain fibers in the gastrointestinal tract (GIT). Original data are also presented in this work where SCFA (acetate, butyrate and propionate) and B group vitamins (riboflavin, folate and thiamine) production was determined for selected probiotic bacteria.


Assuntos
Metabolismo Energético , Ácidos Graxos Voláteis/metabolismo , Probióticos/metabolismo , Simbiose , Vitaminas/metabolismo , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/metabolismo , Animais , Butiratos/metabolismo , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/biossíntese , Fermentação , Alimentos , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Humanos , Camundongos , Vitaminas/biossíntese
8.
Appl Microbiol Biotechnol ; 101(14): 5709-5721, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28540425

RESUMO

The ability of Lactococcus lactis to adhere to the intestinal mucosa can potentially prolong the contact with the host, and therefore favour its persistence in the gut. In the present study, the contribution of plasmid-encoded factors to the adhesive and transit properties of the L. lactis subsp. cremoris IBB477 strain was investigated. Plasmid-cured derivatives as well as deletion mutants were obtained and analysed. Adhesion tests were performed using non-coated polystyrene plates, plates coated with mucin or fibronectin and mucus-secreting HT29-MTX intestinal epithelial cells. The results indicate that two plasmids, pIBB477a and b, are involved in adhesion of the IBB477 strain. One of the genes localised on plasmid pIBB477b (AJ89_14230), which encodes cell wall-associated peptidase S8 (PrtP), mediates adhesion of the IBB477 strain to bare, mucin- and fibronectin-coated polystyrene, as well as to HT29-MTX cells. Interactions between bacteria and mucus secreted by HT29-MTX cells were further investigated by fluorescent staining and confocal microscopy. Confocal images showed that IBB477 forms dense clusters embedded in secreted mucus. Finally, the ability of IBB477 strain and its ΔprtP deletion mutant to colonise the gastrointestinal tract of conventional C57Bl/6 mice was determined. Both strains were present in the gut for up to 72 h. In summary, adhesion and persistence of IBB477 were analysed by in vitro and in vivo approaches, respectively. Our studies revealed that plasmidic genes encoding cell surface proteins are more involved in the adhesion of IBB477 strain than in the ability to confer a selective advantage in the gut.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Mucosa Intestinal/microbiologia , Lactococcus lactis/enzimologia , Peptídeo Hidrolases/metabolismo , Plasmídeos/genética , Animais , Proteínas de Bactérias/genética , Células HT29 , Humanos , Mucosa Intestinal/citologia , Lactococcus lactis/genética , Lactococcus lactis/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Muco/microbiologia , Peptídeo Hidrolases/genética , Deleção de Sequência
9.
J Gastroenterol ; 51(9): 862-73, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26749362

RESUMO

BACKGROUND: Chronic intestinal inflammation alters host physiology and could lead to colorectal cancer (CRC). We have previously reported beneficial effects of the probiotic strain of Lactobacillus casei BL23 in different murine models of intestinal inflammation. In addition, there is an emerging interest on the potential beneficial effects of probiotics to treat CRC. We thus explored whether L. casei BL23 displays protective effects on CRC. METHODS: Mice were subcutaneously injected with 1,2-dimethylhydrazine (DMH) weekly during 10 weeks and orally administered with L. casei BL23 in the drinking water until the 10th week. Multiple plaque lesions in the large intestine were observed macroscopically and counted and intestinal tissues were also histologically analyzed. Finally, T-cell populations and cytokine production were evaluated after co-incubation of L. casei BL23 with spleen cells from non-treated mice to determine the immuno-modulatory effects of this bacterium. RESULTS: Our results show that oral treatment with this probiotic bacterium modulates host immune responses and significantly protect mice against DMH-induced CRC. This protection may be associated with the modulation of regulatory T-cells towards a Th17-biased immune response accompanied by the expression of regulatory cytokines (IL-6, IL-17, IL-10 and TGF-ß), as demonstrated in L. casei BL23-treated splenocytes, but also with the colonic expression of IL-22 observed in vivo on L. casei BL23-treated mice; suggesting the induction of a fine-tune Th17-biased response. CONCLUSIONS: Altogether our results reveal the high potential of L. casei BL23 to treat CRC and opens new frontiers for the study of immunomodulatory functions of probiotics.


Assuntos
Neoplasias Colorretais/prevenção & controle , Lacticaseibacillus casei , Probióticos/uso terapêutico , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , 1,2-Dimetilidrazina , Animais , Biomarcadores/metabolismo , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Citocinas/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
10.
Appl Environ Microbiol ; 79(5): 1491-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23263960

RESUMO

In this study, we developed a large-scale screening of bacterial strains in order to identify novel candidate probiotics with immunomodulatory properties. For this, 158 strains, including a majority of lactic acid bacteria (LAB), were screened by two different cellular models: tumor necrosis factor alpha (TNF-α)-activated HT-29 cells and peripheral blood mononuclear cells (PBMCs). Different strains responsive to both models (pro- and anti-inflammatory strains) were selected, and their protective effects were tested in vivo in a murine model of influenza virus infection. Daily intragastric administrations during 10 days before and 10 days after viral challenge (100 PFU of influenza virus H1N1 strain A Puerto Rico/8/1934 [A/PR8/34]/mouse) of Lactobacillus plantarum CNRZ1997, one potentially proinflammatory probiotic strain, led to a significant improvement in mouse health by reducing weight loss, alleviating clinical symptoms, and inhibiting significantly virus proliferation in lungs. In conclusion, in this study, we have combined two cellular models to allow the screening of a large number of LAB for their immunomodulatory properties. Moreover, we identified a novel candidate probiotic strain, L. plantarum CNRZ1997, active against influenza virus infection in mice.


Assuntos
Fatores Imunológicos/administração & dosagem , Lactobacillus plantarum/isolamento & purificação , Infecções por Orthomyxoviridae/imunologia , Orthomyxoviridae/patogenicidade , Probióticos/administração & dosagem , Animais , Peso Corporal , Células Cultivadas , Modelos Animais de Doenças , Lactobacillus plantarum/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Pulmão/virologia , Camundongos , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA