Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pediatr Pulmonol ; 57(2): 519-528, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34842360

RESUMO

BACKGROUND: Biomarkers that can risk-stratify children with influenza virus lower respiratory infection may identify patients for targeted intervention. Early elevation of alveolar-related proteins in the bloodstream in these patients could indicate more severe lung damage portending worse outcomes. METHODS: We used a mouse model of human influenza infection and evaluated relationships between lung pathophysiology and surfactant protein D (SP-D), SP-A, and Club cell protein 16 (CC16). We then measured SP-A, SP-D, and CC16 levels in plasma samples from 94 children with influenza-associated acute respiratory failure (PICFLU cohort), excluding children with underlying conditions explaining disease severity. We tested for associations between levels of circulating proteins and disease severity including the diagnosis of acute respiratory distress syndrome (ARDS), mechanical ventilator, intensive care unit and hospital days, and hospital mortality. RESULTS: Circulating SP-D showed a greater increase than SP-A and CC16 in mice with increased alveolar-vascular permeability following influenza infection. In the PICFLU cohort, SP-D was associated with moderate-severe ARDS diagnosis (p = 0.01) and with mechanical ventilator (r = 0.45, p = 0.002), ICU (r = 0.44, p = 0.002), and hospital days (r = 0.37, p = 0.001) in influenza-infected children without bacterial coinfection. Levels of SP-D were lower in children with secondary bacterial pneumonia (p = 0.01) and not associated with outcomes. CC16 and SP-A levels did not differ with bacterial coinfection and were not consistently associated with severe outcomes. CONCLUSIONS: SP-D has potential as an early circulating biomarker reflecting a degree of lung damage caused directly by influenza virus infection in children. Secondary bacterial pneumonia alters SP-D biomarker performance.


Assuntos
Influenza Humana , Lesão Pulmonar , Síndrome do Desconforto Respiratório , Animais , Biomarcadores , Criança , Humanos , Influenza Humana/complicações , Lesão Pulmonar/complicações , Camundongos , Proteína D Associada a Surfactante Pulmonar
2.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L705-L714, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33533300

RESUMO

The mechanisms responsible for driving endogenous airway hyperresponsiveness (AHR) in the form of exercise-induced bronchoconstriction (EIB) are not fully understood. We examined alterations in airway phospholipid hydrolysis, surfactant degradation, and lipid mediator release in relation to AHR severity and changes induced by exercise challenge. Paired induced sputum (n = 18) and bronchoalveolar lavage (BAL) fluid (n = 11) were obtained before and after exercise challenge in asthmatic subjects. Samples were analyzed for phospholipid structure, surfactant function, and levels of eicosanoids and secreted phospholipase A2 group 10 (sPLA2-X). A primary epithelial cell culture model was used to model effects of osmotic stress on sPLA2-X. Exercise challenge resulted in increased surfactant degradation, phospholipase activity, and eicosanoid production in sputum samples of all patients. Subjects with EIB had higher levels of surfactant degradation and phospholipase activity in BAL fluid. Higher basal sputum levels of cysteinyl leukotrienes (CysLTs) and prostaglandin D2 (PGD2) were associated with direct AHR, and both the postexercise and absolute change in CysLTs and PGD2 levels were associated with EIB severity. Surfactant function either was abnormal at baseline or became abnormal after exercise challenge. Baseline levels of sPLA2-X in sputum and the absolute change in amount of sPLA2-X with exercise were positively correlated with EIB severity. Osmotic stress ex vivo resulted in movement of water and release of sPLA2-X to the apical surface. In summary, exercise challenge promotes changes in phospholipid structure and eicosanoid release in asthma, providing two mechanisms that promote bronchoconstriction, particularly in individuals with EIB who have higher basal levels of phospholipid turnover.


Assuntos
Asma/complicações , Eicosanoides/metabolismo , Exercício Físico , Fosfolipases A2 do Grupo X/metabolismo , Fosfolipídeos/metabolismo , Hipersensibilidade Respiratória/etiologia , Tensoativos/metabolismo , Adolescente , Adulto , Broncoconstrição , Feminino , Humanos , Hidrólise , Masculino , Pressão Osmótica , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/patologia , Escarro , Adulto Jovem
3.
J Virol ; 89(5): 2764-76, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25540362

RESUMO

UNLABELLED: Influenza A virus (IAV) infections are influenced by type 1 interferon-mediated antiviral defenses and by viral countermeasures to these defenses. When IAV NS1 protein is disabled, RNase L restricts virus replication; however, the RNAs targeted for cleavage by RNase L under these conditions have not been defined. In this study, we used deep-sequencing methods to identify RNase L cleavage sites within host and viral RNAs from IAV PR8ΔNS1-infected A549 cells. Short hairpin RNA knockdown of RNase L allowed us to distinguish between RNase L-dependent and RNase L-independent cleavage sites. RNase L-dependent cleavage sites were evident at discrete locations in IAV RNA segments (both positive and negative strands). Cleavage in PB2, PB1, and PA genomic RNAs suggests that viral RNPs are susceptible to cleavage by RNase L. Prominent amounts of cleavage mapped to specific regions within IAV RNAs, including some areas of increased synonymous-site conservation. Among cellular RNAs, RNase L-dependent cleavage was most frequent at precise locations in rRNAs. Our data show that RNase L targets specific sites in both host and viral RNAs to restrict influenza virus replication when NS1 protein is disabled. IMPORTANCE: RNase L is a critical component of interferon-regulated and double-stranded-RNA-activated antiviral host responses. We sought to determine how RNase L exerts its antiviral activity during influenza virus infection. We enhanced the antiviral activity of RNase L by disabling a viral protein, NS1, that inhibits the activation of RNase L. Then, using deep-sequencing methods, we identified the host and viral RNAs targeted by RNase L. We found that RNase L cleaved viral RNAs and rRNAs at very precise locations. The direct cleavage of IAV RNAs by RNase L highlights an intimate battle between viral RNAs and an antiviral endonuclease.


Assuntos
Endorribonucleases/metabolismo , Interações Hospedeiro-Patógeno , Vírus da Influenza A/fisiologia , RNA Viral/metabolismo , Linhagem Celular , Endorribonucleases/genética , Células Epiteliais/virologia , Técnicas de Silenciamento de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hidrólise , Vírus da Influenza A/imunologia , Estabilidade de RNA , Replicação Viral
4.
mBio ; 5(2): e00856-14, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24570368

RESUMO

The interferon (IFN)-inducible antiviral state is mediated in part by the 2',5'-oligoadenylate (2-5A) synthetase (OAS)/RNase L system. 2-5A, produced from ATP by OAS proteins in response to viral double-stranded RNA, binds to and activates RNase L. RNase L restricts viral infections by degrading viral and cellular RNA, inducing autophagy and apoptosis, and producing RNA degradation products that amplify production of type I interferons (IFNs) through RIG-I-like receptors. However, the effects of the OAS/RNase L pathway on IFN induction in different cell types that vary in basal levels of these proteins have not been previously reported. Here we report higher basal expression of both RNase L and OAS in mouse macrophages in comparison to mouse embryonic fibroblasts (MEFs). In MEFs, RNase L gene knockout decreased induction of IFN-ß by encephalomyocarditis virus infection or poly(rI):poly(rC) (pIC) transfection. In contrast, in macrophages, RNase L deletion increased (rather than decreased) induction of IFN-ß by virus or pIC. RNA damage from RNase L in virus-infected macrophages is likely responsible for reducing IFN-ß production. Similarly, direct activation of RNase L by transfection with 2-5A induced IFN-ß in MEFs but not in macrophages. Also, viral infection or pIC transfection caused RNase L-dependent apoptosis of macrophages but not of MEFs. Our results suggest that cell-type-specific differences in basal levels of OAS and RNase L are determinants of IFN-ß induction that could affect tissue protection and survival during viral infections. IMPORTANCE Type I interferons (IFNs) such as IFN-ß are essential antiviral cytokines that are often required for animal survival following infections by highly pathogenic viruses. Therefore, host factors that regulate type I IFN production are critically important for animal and human health. Previously we reported that the OAS/RNase L pathway amplifies antiviral innate immunity by enhancing IFN-ß production in mouse embryonic fibroblasts and in virus-infected mice. Here we report that high basal levels of OAS/RNase L in macrophages reduce, rather than increase, virus induction of IFN-ß. RNA damage and apoptosis caused by RNase L were the likely reasons for the decreased IFN-ß production in virus-infected macrophages. Our studies suggest that during viral infections, the OAS/RNase L pathway can either enhance or suppress IFN production, depending on the cell type. IFN regulation by RNase L is suggested to contribute to tissue protection and survival during viral infections.


Assuntos
2',5'-Oligoadenilato Sintetase/imunologia , Vírus da Encefalomiocardite/imunologia , Endorribonucleases/imunologia , Fibroblastos/imunologia , Interferon beta/imunologia , Interferon beta/metabolismo , Macrófagos/imunologia , 2',5'-Oligoadenilato Sintetase/metabolismo , Animais , Endorribonucleases/metabolismo , Fibroblastos/virologia , Macrófagos/virologia , Camundongos
5.
Inflamm Bowel Dis ; 19(6): 1295-305, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23567782

RESUMO

BACKGROUND: The endoribonuclease RNase-L is a type-I interferon (IFN)-regulated component of the innate immune response that functions in antiviral, antibacterial, and antiproliferative activities. RNase-L produces RNA agonists of RIG-I-like receptors, sensors of cytosolic pathogen-associated RNAs that induce cytokines including IFN-ß. IFN-ß and RIG-I-like receptors signaling mediate protective responses against experimental colitis and colitis-associated cancer and contribute to gastrointestinal homeostasis. Therefore, we investigated a role for RNase-L in murine colitis and colitis-associated cancer and its association with RIG-I-like receptors signaling in response to bacterial RNA. METHODS: Colitis was induced in wild type-deficient and RNase-L-deficient mice (RNase-L⁻/⁻) by administration of dextran sulfate sodium (DSS). Colitis-associated cancer was induced by DSS and azoxymethane (AOM). Histological analysis and immunohistochemistry were performed on colon tissue to analyze immune cell infiltration and tissue damage after induction of colitis. Expression of cytokines was measured by quantitative real-time-PCR and ELISA. RESULTS: DSS-treated RNase-L⁻/⁻ mice exhibited a significantly higher clinical score, delayed leukocyte infiltration, reduced expression of IFN-ß, tumor necrosis factor α, interleukin-1ß, and interleukin-18 at early times post-DSS exposure, and increased mortality as compared with wild-type mice. DSS/AOM-treated RNase-L⁻/⁻ mice displayed an increased tumor burden. Bacterial RNA triggered IFN-ß production in an RNase-L-dependent manner and provided a potential mechanism by which RNase-L contributes to the gastrointestinal immune response to microbiota and protects against experimental colitis and colitis-associated cancer. CONCLUSIONS: RNase-L promotes the innate immune response to intestinal damage and ameliorates murine colitis and colitis-associated cancer. The RNase-L-dependent production of IFN-ß stimulated by bacterial RNA may be a mechanism to protect against gastrointestinal inflammatory disease.


Assuntos
Colite/complicações , Neoplasias do Colo/etiologia , Modelos Animais de Doenças , Endorribonucleases/fisiologia , Imunidade Inata/imunologia , Interferon Tipo I/metabolismo , Animais , Azoximetano/toxicidade , Western Blotting , Carcinógenos/toxicidade , Colite/induzido quimicamente , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Citocinas/genética , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peroxidase/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
6.
J Interferon Cytokine Res ; 31(1): 49-57, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21190483

RESUMO

The interferon (IFN)-inducible 2'-5'-oligoadenylate synthetase (OAS)/RNase L pathway blocks infections by some types of viruses through cleavage of viral and cellular single-stranded RNA. Viruses induce type I IFNs that initiate signaling to the OAS genes. OAS proteins are pathogen recognition receptors for the viral pathogen-associated molecular pattern, double-stranded RNA. Double-stranded RNA activates OAS to produce p(x)5'A(2'p5'A)(n); x = 1-3; n > 2 (2-5A) from ATP. Upon binding 2-5A, RNase L is converted from an inactive monomer to a potently active dimeric endoribonuclease for single-stranded RNA. RNase L contains, from N- to C-terminus, a series of 9 ankyrin repeats, a linker, several protein kinase-like motifs, and a ribonuclease domain homologous to Ire1 (involved in the unfolded protein response). In the past few years, it has become increasingly apparent that RNase L and OAS contribute to innate immunity in many ways. For example, small RNA cleavage products produced by RNase L during viral infections can signal to the retinoic acid-inducible-I like receptors to amplify and perpetuate signaling to the IFN-ß gene. In addition, RNase L is now implicated in protecting the central nervous system against viral-induced demyelination. A role in tumor suppression was inferred by mapping of the RNase L gene to the hereditary prostate cancer 1 (HPC1) gene, which in turn led to discovery of the xenotropic murine leukemia-related virus. A broader role in innate immunity is suggested by involvement of RNase L in cytokine induction and endosomal pathways that suppress bacterial infections. These newly described findings about RNase L could eventually provide the basis for developing broad-spectrum antimicrobial drugs.


Assuntos
Endorribonucleases/metabolismo , Imunidade Inata , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Animais , Antígenos de Superfície/metabolismo , Doenças Desmielinizantes/prevenção & controle , Proteínas ELAV , Proteína Semelhante a ELAV 1 , Endorribonucleases/genética , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Interferons/genética , Interferons/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Domínios e Motivos de Interação entre Proteínas , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Homologia de Sequência de Aminoácidos , Viroses/imunologia , Viroses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA