Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phytochemistry ; 70(4): 465-72, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19272620

RESUMO

Papain (EC 3.4.22.2), the archetypal cysteine protease of C1 family, is of considerable commercial significance. In order to obtain substantial quantities of active papain, the DNA coding for propapain, the papain precursor, has been cloned and expressed at a high level in Escherichia coli BL21(DE3) transformed with two T7 promoter based pET expression vectors - pET30 Ek/LIC and pET28a(+) each containing the propapain gene. In both cases, recombinant propapain was expressed as an insoluble His-tagged fusion protein, which was solubilized, and purified by nickel chelation affinity chromatography under denaturing conditions. By systematic variation of parameters influencing the folding, disulfide bond formation and prevention of aggregate formation, a straightforward refolding procedure, based on dilution method, has been designed. This refolded protein was subjected to size exclusion chromatography to remove impurities and around 400mg of properly refolded propapain was obtained from 1L of bacterial culture. The expressed protein was further verified by Western blot analysis by cross-reacting it with a polyclonal anti-papain antibody and the proteolytic activity was confirmed by gelatin SDS-PAGE. This refolded propapain could be converted to mature active papain by autocatalytic processing at low pH and the recombinant papain so obtained has a specific activity closely similar to the native papain. This is a simple and efficient expression and purification procedure to obtain a yield of active papain, which is the highest reported so far for any recombinant plant cysteine protease.


Assuntos
Carica/enzimologia , Precursores Enzimáticos/biossíntese , Papaína/biossíntese , Proteínas Recombinantes/biossíntese , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Precursores Enzimáticos/genética , Precursores Enzimáticos/isolamento & purificação , Escherichia coli/genética , Corpos de Inclusão/química , Cinética , Papaína/genética , Papaína/isolamento & purificação , Reação em Cadeia da Polimerase , Engenharia de Proteínas/métodos , Dobramento de Proteína , Proteínas Recombinantes/isolamento & purificação
2.
FEBS J ; 275(3): 421-34, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18167146

RESUMO

Multiple proteases of the same family are quite often present in the same species in biological systems. These multiple proteases, despite having high homology in their primary and tertiary structures, show deviations in properties such as stability, activity, and specificity. It is of interest, therefore, to compare the structures of these multiple proteases in a single species to identify the structural changes, if any, that may be responsible for such deviations. Ervatamin-A, ervatamin-B and ervatamin-C are three such papain-like cysteine proteases found in the latex of the tropical plant Ervatamia coronaria, and are known not only for their high stability over a wide range of temperature and pH, but also for variations in activity and specificity among themselves and among other members of the family. Here we report the crystal structures of ervatamin-A and ervatamin-C, complexed with an irreversible inhibitor 1-[l-N-(trans-epoxysuccinyl)leucyl]amino-4-guanidinobutane (E-64), together with enzyme kinetics and molecular dynamic simulation studies. A comparison of these results with the earlier structures helps in a correlation of the structural features with the corresponding functional properties. The specificity constants (k(cat)/K(m)) for the ervatamins indicate that all of these enzymes have specificity for a branched hydrophobic residue at the P2 position of the peptide substrates, with different degrees of efficiency. A single amino acid change, as compared to ervatamin-C, in the S2 pocket of ervatamin-A (Ala67-->Tyr) results in a 57-fold increase in its k(cat)/K(m) value for a substrate having a Val at the P2 position. Our studies indicate a higher enzymatic activity of ervatamin-A, which has been subsequently explained at the molecular level from the three-dimensional structure of the enzyme and in the context of its helix polarizibility and active site plasticity.


Assuntos
Apocynaceae/metabolismo , Cisteína Endopeptidases/metabolismo , Proteínas de Plantas/metabolismo , Apocynaceae/genética , Sítios de Ligação , Simulação por Computador , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Papaína/química , Papaína/genética , Papaína/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Especificidade por Substrato
3.
Artigo em Inglês | MEDLINE | ID: mdl-16511096

RESUMO

The ervatamins are highly stable cysteine proteases that are present in the latex of the medicinal plant Ervatamia coronaria and belong to the papain family, members of which share similar amino-acid sequences and also a similar fold comprising two domains. Ervatamin A from this family, a highly active protease compared with others from the same source, has been purified to homogeneity by ion-exchange chromatography and crystallized by the vapour-diffusion method. Needle-shaped crystals of ervatamin A diffract to 2.1 A resolution and belong to space group C222(1), with unit-cell parameters a = 31.10, b = 144.17, c = 108.61 A. The solvent content using an ervatamin A molecular weight of 27.6 kDa is 43.9%, with a VM value of 2.19 A3 Da(-1) assuming one protein molecule in the asymmetric unit. A molecular-replacement solution has been found using the structure of ervatamin C as a search model.


Assuntos
Cisteína Endopeptidases/química , Plantas Medicinais/química , Clonagem Molecular/métodos , Cristalização/métodos , Cisteína Endopeptidases/isolamento & purificação , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Volatilização , Difração de Raios X
4.
Biochemistry ; 43(6): 1532-40, 2004 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-14769029

RESUMO

Ervatamin C is an unusually stable cysteine protease from the medicinal plant Ervatamia coronaria belonging to the papain family. Though it cleaves denatured natural proteins with high specific activity, its activity toward some small synthetic substrates is found to be insignificant. The three-dimensional structure and amino acid sequence of the protein have been determined from X-ray diffraction data at 1.9 A (R = 17.7% and R(free) = 19.0%). The overall structure of ervatamin C is similar to those of other homologous cysteine proteases of the family, folding into two distinct left and right domains separated by an active site cleft. However, substitution of a few amino acid residues, which are conserved in the other members of the family, has been observed in both the domains and also at the region of the interdomain cleft. Consequently, the number of intra- and interdomain hydrogen-bonding interactions is enhanced in the structure of ervatamin C. Moreover, a unique disulfide bond has been identified in the right domain of the structure, in addition to the three conserved disulfide bridges present in the papain family. All these factors contribute to an increase in the stability of ervatamin C. In this enzyme, the nature of the S2 subsite, which is the primary determinant of specificity of these proteases, is similar to that of papain, but at the S3 subsite, Ala67 replaces an aromatic residue, and has the effect of eliminating sufficient hydrophobic interactions required for S3-P3 stabilization. This provides the possible explanation for the lower activity of ervatamin C toward the small substrate/inhibitor. This substitution, however, does not affect the binding of denatured natural protein substrates to the enzyme significantly, as there exist a number of additional interactions at the enzyme-substrate interface outside the active site cleft.


Assuntos
Cisteína Endopeptidases/química , Proteínas de Plantas/química , Tabernaemontana/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/metabolismo , Estabilidade Enzimática , Evolução Molecular , Leupeptinas/química , Leupeptinas/metabolismo , Dados de Sequência Molecular , Papaína/química , Proteínas de Plantas/metabolismo , Dobramento de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato
5.
Proteins ; 51(4): 489-97, 2003 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12784208

RESUMO

The crystal structure of a cysteine protease ervatamin B, isolated from the medicinal plant Ervatamia coronaria, has been determined at 1.63 A. The unknown primary structure of the enzyme could also be traced from the high-quality electron density map. The final refined model, consisting of 215 amino acid residues, 208 water molecules, and a thiosulfate ligand molecule, has a crystallographic R-factor of 15.9% and a free R-factor of 18.2% for F > 2sigma(F). The protein belongs to the papain superfamily of cysteine proteases and has some unique properties compared to other members of the family. Though the overall fold of the structure, comprising two domains, is similar to the others, a few natural substitutions of conserved amino acid residues at the interdomain cleft of ervatamin B are expected to increase the stability of the protein. The substitution of a lysine residue by an arginine (residue 177) in this region of the protein may be important, because Lys --> Arg substitution is reported to increase the stability of proteins. Another substitution in this cleft region that helps to hold the domains together through hydrogen bonds is Ser36, replacing a conserved glycine residue in the others. There are also some substitutions in and around the active site cleft. Residues Tyr67, Pro68, Val157, and Ser205 in papain are replaced by Trp67, Met68, Gln156, and Leu208, respectively, in ervatamin B, which reduces the volume of the S2 subsite to almost one-fourth that of papain, and this in turn alters the substrate specificity of the enzyme.


Assuntos
Cisteína Endopeptidases/química , Plantas/enzimologia , Sequência de Aminoácidos , Sítios de Ligação/genética , Dicroísmo Circular , Cristalização , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Estabilidade Enzimática , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
6.
Inorg Chem ; 37(21): 5424-5430, 1998 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-11670684

RESUMO

Earlier attempts to obtain technetium complexes with cysteine always resulted in the formation of a product contaminated with polymeric species. A pure product, which could be chemically characterized and adopted for radiopharmaceutical preparation, has now been obtained by using cystine as the precursor of cysteine. This method has been extended to prepare the corresponding rhenium chelate, isolated as the tetraphenylphosphonium salt [Ph(4)P](+)[{ReO(Cys)(2)}(-){HReO(Cys)(2)}].4H(2)O. The X-ray crystal structure of this compound revealed the presence of both neutral and anionic chelated species. In [HReO(Cys)(2)], the cysteine carboxylate moiety is unidentatedly bound to rhenium, while the carboxylic acid of the second cysteine remains as free COOH. The coordination environment around rhenium in the anionic species [ ReO(Cys)(2)(-)] is similar, the only difference being that the uncoordinated carboxylate moiety is present as a COO(-) anion. The thiolate, amine coordination of the ligand with the metal is present in both the chelate units. The compound crystallized in an orthorhombic system with the space group P2(1)2(1)2(1), and having four formula units in each cell. The crystal data are a = 9.700(2) Å, b = 12.836(3) Å, and c = 36.228(3) Å. The rhenium chelate has been structurally correlated with the technetium chelates through comparable spectroscopic and chromatographic data. The technetium-99m analogue of this rhenium chelate exhibited renal tubular transport and renal retention, which makes this radiopharmaceutical useful for evaluation of the clinical status of renal patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA