Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(10)2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37896834

RESUMO

Human coronaviruses like MERS CoV are known to utilize dipeptidyl peptidase 4 (DPP4), apart from angiotensin-converting enzyme 2(ACE2) as a potential co-receptor for viral cell entry. DPP4, the ubiquitous membrane-bound aminopeptidase, is closely associated with elevation of disease severity in comorbidities. In SARS-CoV-2, there is inadequate evidence for combination of spike protein variants with DPP4, and underlying adversity in COVID-19. To elucidate this mechanistic basis, we have investigated interaction of spike protein variants with DPP4 through molecular docking and simulation studies. The possible binding interactions between the receptor binding domain (RBD) of different spike variants of SARS-CoV-2 and DPP4 have been compared with interactions observed in the experimentally determined structure of the complex of MERS-CoV with DPP4. Comparative binding affinity confers that Delta-CoV-2: DPP4 shows close proximity with MERS-CoV:DPP4, as depicted from accessible surface area, radius of gyration and number of hydrogen bonding in the interface. Mutations in the delta variant, L452R and T478K directly participate in DPP4 interaction, enhancing DPP4 binding. E484K in alpha and gamma variants of spike protein is also found to interact with DPP4. Hence, DPP4 interaction with spike protein becomes more suitable due to mutation, especially due to L452R, T478K and E484K. Furthermore, perturbation in the nearby residues Y495, Q474 and Y489 is evident due to L452R, T478K and E484K, respectively. Virulent strains of spike protein are more susceptible to DPP4 interaction and are prone to be victimized in patients due to comorbidities. Our results will aid the rational optimization of DPP4 as a potential therapeutic target to manage COVID-19 disease severity.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Dipeptidil Peptidase 4/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Proteica , Mutação
2.
J Chem Inf Model ; 63(17): 5583-5591, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37646788

RESUMO

A molten globule (MG) state is an intermediate state of protein observed during the unfolding of the native structure. In MG states, milk protein α-lactalbumin (aLA) binds to oleic acid (OLA). This MG-aLA-OLA complex, popularly known as XAMLET, performs cytotoxic activities against cancer cell lines. However, the microscopic understanding of ligand recognition ability in the MG state of the protein has not yet been explored. Motivated by this, we explore the binding of bovine aLA with OLA using all-atom molecular dynamics (MD) simulations. We find the binding mode between MG-aLA and OLA using the conformational thermodynamics method. We also estimate the binding free energy using the umbrella sampling (US) method for both the MG state and the neutral state. We find that the binding free energy obtained from US is comparable with earlier experimental results. We characterize the dihedral fluctuations as the ligand is liberated from the active site of the protein using steered MD. The low energy fluctuations occur near the ligand binding site, which eventually transfer toward the Ca2+-binding site as the ligand is taken away from the protein.


Assuntos
Simulação de Dinâmica Molecular , Fatores de Transcrição , Animais , Bovinos , Ligantes , Sítios de Ligação , Linhagem Celular
3.
J Phys Chem Lett ; 13(36): 8564-8572, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36069730

RESUMO

Cancer cells secrete extracellular vesicles (EVs) covered with a carbohydrate polymer, hyaluronan (HA), linked to tumor malignancy. Herein, we have unravelled the contour lengths of HA on a single cancer cell-derived EV surface using single-molecule force spectroscopy (SMFS), which divulges the presence of low molecular weight HA (LMW-HA < 200 kDa). We also discovered that these LMW-HA-EVs are significantly more elastic than the normal cell-derived EVs. This intrinsic elasticity of cancer EVs could be directly allied to the LMW-HA abundance and associated labile water network on EV surface as revealed by correlative SMFS, hydration dynamics with fluorescence spectroscopy, and molecular dynamics simulations. This method emerges as a molecular biosensor of the cancer microenvironment.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Ácido Hialurônico/química , Peso Molecular , Microambiente Tumoral
4.
Biopolymers ; 113(8): e23518, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35621373

RESUMO

Translocation of positively charged cell penetrating peptides (CPP) through cell membrane is important in drug delivery. Here we report all-atom molecular dynamics simulations to investigate how a biphosphate salt in a solvent affects the interaction of a CPP, HIV-1 Tat peptide with model dipalmitoylphosphatidylcholine (DPPC) lipid bilayer. Tat peptide has a large number of basic arginines and a couple of polar glutamines. We observe that in absence of salt, the basic residues of the polypeptide get localized in the vicinity of the membrane without altering the bilayer properties much; polypeptide induce local thinning of the bilayer membrane at the area of localization. In presence of biphosphate salt, the basic residues, dressed by the biphosphate ions, are repelled by the phosphate head groups of the lipid molecules. However, polar glutamine prefers to stay in the vicinity of the bilayer. This leads to larger local bilayer thickness at the contact point by the polar residue and non-uniform bilayer thickness profile. The thickness deformation of bilayer structure disappears upon mutating the polar residue, suggesting importance of the polar residue in bilayer deformation. Our studies point to control bilayer deformation by appropriate peptide sequence and solvent conditions.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Peptídeos Penetradores de Células , 1,2-Dipalmitoilfosfatidilcolina/química , Peptídeos Penetradores de Células/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Solventes
5.
Biochim Biophys Acta Gen Subj ; 1864(7): 129600, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32179130

RESUMO

BACKGROUND: Molecular modeling of RNA double helices is possible using most probable values of basepair parameters obtained from crystal structure database. The A:A w:wC non-canonical basepair, involving Watson-Crick edges of two Adenines in cis orientation, appears quite frequently in database. Bimodal distribution of its Shear, due to two different H-bonding schemes, introduces the confusion in assigning most the probable value. Its effect is pronounced when the A:A w:wC basepair stacks on Sheared wobble G:U W:WC basepairs. METHODS: We employed molecular dynamics simulations of three possible double helices with GAG, UAG and GAU sequence motifs at their centers and quantum chemical calculation for non-canonical A:A w:wC basepair stacked on G:U W:WC basepair. RESULTS: We noticed stable structures of GAG motif with specifically negative Shear of the A:A basepair but stabilities of the other motifs were not found with A:A w:wC basepairing. Hybrid DFT-D and MP2 stacking energy analyses on dinucleotide step sequences, A:A w:wC::G:U W:WC and A:A w:wC::U:G W:WC reveal that viable orientation of A:A::G:U prefers one of the H-bonding modes with negative Shear, supported by crystal structure database. The A:A::U:G dinucleotide, however, prefers structure with only positive Shear. CONCLUSIONS: The quantum chemical calculations explain why MD simulations of GAG sequence motif only appear stable. In the cases of the GAU and UAG motifs "tug of war" situation between positive and negative Shears of A:A w:wC basepair induces conformational plasticity. GENERAL SIGNIFICANCE: We have projected comprehensive reason behind the promiscuous nature of A:A w:wC basepair which brings occasional structural plasticity.


Assuntos
Pareamento de Bases/genética , Biologia Computacional , Química Computacional , RNA/ultraestrutura , Adenina/metabolismo , Cristalografia por Raios X , Fosfatos de Dinucleosídeos/genética , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Estrutura Molecular , Conformação de Ácido Nucleico , RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA