Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Nanotechnol ; 19(1): 106-114, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37709951

RESUMO

Quantum biological tunnelling for electron transfer is involved in controlling essential functions for life such as cellular respiration and homoeostasis. Understanding and controlling the quantum effects in biology has the potential to modulate biological functions. Here we merge wireless nano-electrochemical tools with cancer cells for control over electron transfer to trigger cancer cell death. Gold bipolar nanoelectrodes functionalized with redox-active cytochrome c and a redox mediator zinc porphyrin are developed as electric-field-stimulating bio-actuators, termed bio-nanoantennae. We show that a remote electrical input regulates electron transport between these redox molecules, which results in quantum biological tunnelling for electron transfer to trigger apoptosis in patient-derived cancer cells in a selective manner. Transcriptomics data show that the electric-field-induced bio-nanoantenna targets the cancer cells in a unique manner, representing electrically induced control of molecular signalling. The work shows the potential of quantum-based medical diagnostics and treatments.


Assuntos
Apoptose , Neoplasias , Humanos , Transporte de Elétrons , Oxirredução , Morte Celular , Ouro/química
2.
Heliyon ; 9(10): e21058, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37876438

RESUMO

p53 pathway is important in tumorigenesis. However, no study has been performed to specifically investigate the role of p53 pathway genes in bladder cancer (BLCA). In this study, transcriptomics data of muscle invasive bladder cancer patients (n = 411) from The Cancer Genome Atlas (TCGA) were investigated. Using the hallmark p53 pathway gene set, the Non-Negative Matrix factorization (NMF) analysis identified two subtypes (C1 and C2). Clinical, survival, and immunological analysis were done to validate distinct characteristics of the subtypes. Pathway enrichment analysis showed the subtype C1 with poor prognosis having enrichment in genes of the immunity related pathways, where C2 subtype with better prognosis being enriched in genes of the steroid synthesis and drug metabolism pathways. A signature gene set consisting of MDGA2, GNLY, GGT2, UGT2B4, DLX1, and DSC1 was created followed by a risk model. Their expressions were analyzed in RNA extracted from the blood and matched tumor tissues of BLCA patients (n = 10). DSC1 had significant difference of expression (p = 0.005) between the blood and tumor tissues in our BLCA samples. Contrary to the usual normal bladder tissue to blood ratio, DLX1 expression was lower (p = 0.02734) in tumor tissues than in blood. Being the first research of p53 pathway related signature gene set in bladder cancer, this study potentially has a substantial impact on the development of biomarkers for BLCA.

3.
Genome Med ; 15(1): 48, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434262

RESUMO

BACKGROUND: Spatiotemporal heterogeneity originating from genomic and transcriptional variation was found to contribute to subtype switching in isocitrate dehydrogenase-1 wild-type glioblastoma (GBM) prior to and upon recurrence. Fluorescence-guided neurosurgical resection utilizing 5-aminolevulinic acid (5ALA) enables intraoperative visualization of infiltrative tumors outside the magnetic resonance imaging contrast-enhanced regions. The cell population and functional status of tumor responsible for enhancing 5ALA-metabolism to fluorescence-active PpIX remain elusive. The close spatial proximity of 5ALA-metabolizing (5ALA +) cells to residual disease remaining post-surgery renders 5ALA + biology an early a priori proxy of GBM recurrence, which is poorly understood. METHODS: We performed spatially resolved bulk RNA profiling (SPRP) analysis of unsorted Core, Rim, Invasive margin tissue, and FACS-isolated 5ALA + /5ALA - cells from the invasive margin across IDH-wt GBM patients (N = 10) coupled with histological, radiographic, and two-photon excitation fluorescence microscopic analyses. Deconvolution of SPRP followed by functional analyses was performed using CIBEROSRTx and UCell enrichment algorithms, respectively. We further investigated the spatial architecture of 5ALA + enriched regions by analyzing spatial transcriptomics from an independent IDH-wt GBM cohort (N = 16). Lastly, we performed survival analysis using Cox Proportinal-Hazards model on large GBM cohorts. RESULTS: SPRP analysis integrated with single-cell and spatial transcriptomics uncovered that the GBM molecular subtype heterogeneity is likely to manifest regionally in a cell-type-specific manner. Infiltrative 5ALA + cell population(s) harboring transcriptionally concordant GBM and myeloid cells with mesenchymal subtype, -active wound response, and glycolytic metabolic signature, was shown to reside within the invasive margin spatially distinct from the tumor core. The spatial co-localization of the infiltrating MES GBM and myeloid cells within the 5ALA + region indicates PpIX fluorescence can effectively be utilized to resect the immune reactive zone beyond the tumor core. Finally, 5ALA + gene signatures were associated with poor survival and recurrence in GBM, signifying that the transition from primary to recurrent GBM is not discrete but rather a continuum whereby primary infiltrative 5ALA + remnant tumor cells more closely resemble the eventual recurrent GBM. CONCLUSIONS: Elucidating the unique molecular and cellular features of the 5ALA + population within tumor invasive margin opens up unique possibilities to develop more effective treatments to delay or block GBM recurrence, and warrants commencement of such treatments as early as possible post-surgical resection of the primary neoplasm.


Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Transcriptoma , Recidiva Local de Neoplasia/genética , Perfilação da Expressão Gênica , Algoritmos
4.
Mol Med Rep ; 27(2)2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36633133

RESUMO

The lack of specific and accurate therapeutic targets poses a challenge in the treatment of cervical cancer (CC). Global proteomics has the potential to characterize the underlying and intricate molecular mechanisms that drive the identification of therapeutic candidates for CC in an unbiased manner. The present study assessed human papillomavirus (HPV)­induced proteomic alterations to identify key cancer hallmark pathways and protein­protein interaction (PPI) networks, which offered the opportunity to evaluate the possibility of using these for targeted therapy in CC. Comparative proteomic profiling of HPV­transfected (HPV16/18 E7), HPV­transformed (CaSki and HeLa) and normal human keratinocyte (HaCaT) cells was performed using the liquid chromatography­tandem mass spectrometry (LC­MS/MS) technique. Both label­free quantification and differential expression analysis were performed to assess differentially regulated proteins in HPV­transformed and ­transfected cells. The present study demonstrated that protein expression was upregulated in HPV­transfected cells compared with in HPV­transformed cells. This was probably due to the ectopic expression of E7 protein in the former cell type, in contrast to its constitutive expression in the latter cell type. Subsequent pathway visualization and network construction demonstrated that the upregulated proteins in HPV16/18 E7­transfected cells were predominantly associated with a diverse array of cancer hallmarks, including the mTORC1 signaling pathway, MYC targets V1, hypoxia and glycolysis. Among the various proteins present in the cancer hallmark enrichment pathways, phosphoglycerate kinase 1 (PGK1) was present across all pathways. Therefore, PGK1 may be considered as a potential biomarker. PPI analysis demonstrated a direct interaction between p130 and polyubiquitin B, which may lead to the degradation of p130 via the ubiquitin­proteasome proteolytic pathway. In summary, elucidation of the key signaling pathways in HPV16/18­transfected and ­transformed cells may aid in the design of novel therapeutic strategies for clinical application such as targeted therapy and immunotherapy against cervical cancer.


Assuntos
Papillomavirus Humano 16 , Papillomavirus Humano 18 , Queratinócitos , Proteínas E7 de Papillomavirus , Infecções por Papillomavirus , Mapas de Interação de Proteínas , Neoplasias do Colo do Útero , Feminino , Humanos , Cromatografia Líquida , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 18/metabolismo , Queratinócitos/metabolismo , Queratinócitos/virologia , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/terapia , Proteômica , Espectrometria de Massas em Tandem , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/virologia , Terapia de Alvo Molecular , Imunoterapia
5.
Cell Rep ; 40(12): 111360, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130519

RESUMO

Erythropoietin (Epo) ensures survival and proliferation of colony-forming unit erythroid (CFU-E) progenitor cells and their differentiation to hemoglobin-containing mature erythrocytes. A lack of Epo-induced responses causes embryonic lethality, but mechanisms regulating the dynamic communication of cellular alterations to the organismal level remain unresolved. By time-resolved transcriptomics and proteomics, we show that Epo induces in CFU-E cells a gradual transition from proliferation signature proteins to proteins indicative for differentiation, including heme-synthesis enzymes. In the absence of the Epo receptor (EpoR) in embryos, we observe a lack of hemoglobin in CFU-E cells and massive iron overload of the fetal liver pointing to a miscommunication between liver and placenta. A reduction of iron-sulfur cluster-containing proteins involved in oxidative phosphorylation in these embryos leads to a metabolic shift toward glycolysis. This link connecting erythropoiesis with the regulation of iron homeostasis and metabolic reprogramming suggests that balancing these interactions is crucial for protection from iron intoxication and for survival.


Assuntos
Eritropoetina , Sobrecarga de Ferro , Eritropoese/fisiologia , Eritropoetina/farmacologia , Feminino , Heme , Hemoglobinas , Humanos , Ferro/metabolismo , Gravidez , Proteoma , Enxofre
6.
Cancers (Basel) ; 14(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36010867

RESUMO

Poor outcomes associated with diffuse high-grade gliomas occur in both adults and children, despite substantial progress made in the molecular characterisation of the disease. Targeting the metabolic requirements of cancer cells represents an alternative therapeutic strategy to overcome the redundancy associated with cell signalling. Cholesterol is an integral component of cell membranes and is required by cancer cells to maintain growth and may also drive transformation. Here, we show that removal of exogenous cholesterol in the form of lipoproteins from culture medium was detrimental to the growth of two paediatric diffuse glioma cell lines, KNS42 and SF188, in association with S-phase elongation and a transcriptomic program, indicating dysregulated cholesterol homeostasis. Interrogation of metabolic perturbations under lipoprotein-deficient conditions revealed a reduced abundance of taurine-related metabolites and cholesterol ester species. Pharmacological reduction in intracellular cholesterol via decreased uptake and increased export was simulated using the liver X receptor agonist LXR-623, which reduced cellular viability in both adult and paediatric models of diffuse glioma, although the mechanism appeared to be cholesterol-independent in the latter. These results provide proof-of-principle for further assessment of liver X receptor agonists in paediatric diffuse glioma to complement the currently approved therapeutic regimens and expand the options available to clinicians to treat this highly debilitating disease.

7.
PLoS Negl Trop Dis ; 16(6): e0010537, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35771876

RESUMO

The current study elucidated an association between gene variants and thrombocytopenia through the investigation of the exonic polymorphic landscape of hematopoietic transcription factor-GATA1 gene in dengue patients. A total of 115 unrelated dengue patients with dengue fever (DF) (N = 91) and dengue hemorrhagic fever (DHF) (N = 24) were included in the study. All dengue patients were confirmed through detection of NS1 antigen, IgM, and IgG antibodies against the dengue virus. Polymerase chain reaction using specific primers amplified the exonic regions of GATA1 while Sanger sequencing and chromatogram analyses facilitated the identification of variants. Variants G>A (at chX: 48792009) and C>A (at chX: 4879118) had higher frequency out of 13 variants identified (3 annotated and 10 newly recognized). Patients carrying either nonsynonymous or synonymous variants had significantly lower mean values of platelets compared to those harboring the reference nucleotides (NC_000023.11). Further analyses revealed that the change in amino acid residue leads to the altered three-dimensional structure followed by interaction with neighboring residues. Increased stability of the protein due to substitution of serine by asparagine (S129N at chX: 48792009) may cause increased rigidity followed by reduced structural flexibility which may ultimately disturb the dimerization (an important prerequisite for GATA1 to perform its biological activity) process of the GATA1 protein. This, in turn, may affect the function of GATA1 followed by impaired production of mature platelets which may be reflected by the lower platelet counts in individuals with such variation. In summary, we have identified new variants within the GATA1 gene which were found to be clinically relevant to the outcome of dengue patients and thus, have the potential as candidate biomarkers for the determination of severity and prognosis of thrombocytopenia caused by dengue virus. However, further validation of this study in a large number of dengue patients is warranted. Trial Registration: number SLCTR/2019/037.


Assuntos
Anemia , Dengue , Dengue Grave , Trombocitopenia , Anemia/complicações , Éxons , Fator de Transcrição GATA1/genética , Humanos , Contagem de Plaquetas
9.
Comput Biol Med ; 136: 104703, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34352457

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the latest of the several viral pathogens that have acted as a threat to human health around the world. Thus, to prevent COVID-19 and control the outbreak, the development of vaccines against SARS-CoV-2 is one of the most important strategies at present. The study aimed to design a multi-epitope vaccine (MEV) against SARS-CoV-2. For the development of a more effective vaccine, 1549 nucleotide sequences were taken into consideration, including the variants of concern (B.1.1.7, B.1.351, P.1 and, B.1.617.2) and variants of interest (B.1.427, B.1.429, B.1.526, B.1.617.1 and P.2). A total of 11 SARS-CoV-2 proteins (S, N, E, M, ORF1ab polyprotein, ORF3a, ORF6, ORF7a, ORF7b, ORF8, ORF10) were targeted for T-cell epitope prediction and S protein was targeted for B-cell epitope prediction. MEV was constructed using linkers and adjuvant beta-defensin. The vaccine construct was verified, based on its antigenicity, physicochemical properties, and its binding potential, with toll-like receptors (TLR2, TLR4), ACE2 receptor and B cell receptor. The selected vaccine construct showed considerable binding with all the receptors and a significant immune response, including elevated antibody titer and B cell population along with augmented activity of TH cells, Tc cells and NK cells. Thus, immunoinformatics and in silico-based approaches were used for constructing MEV which is capable of eliciting both innate and adaptive immunity. In conclusion, the vaccine construct developed in this study has all the potential for the development of a next-generation vaccine which may in turn effectively combat the new variants of SARS-CoV-2 identified so far. However, in vitro and animal studies are warranted to justify our findings for its utility as probable preventive measure.


Assuntos
COVID-19 , SARS-CoV-2 , Vacinas contra COVID-19 , Biologia Computacional , Epitopos de Linfócito B , Humanos , Simulação de Acoplamento Molecular
10.
Front Genet ; 11: 578345, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193699

RESUMO

The manifestations of cancerous phenotypes necessitate alterations at different levels of information-flow from genome to proteome. The molecular alterations at different information processing levels serve as the basis for the cancer phenotype to emerge. To understand the underlying mechanisms that drive the acquisition of cancer hallmarks it is required to interrogate cancer cells using multiple levels of information flow represented by different omics - such as genomics, epigenomics, transcriptomics, and proteomics. The advantage of multi-omics data integration comes with a trade-off in the form of an added layer of complexity originating from inherently diverse types of omics-datasets that may pose a challenge to integrate the omics-data in a biologically meaningful manner. The plethora of cancer-specific online omics-data resources, if able to be integrated efficiently and systematically, may facilitate the generation of new biological insights for cancer research. In this review, we provide a comprehensive overview of the online single- and multi-omics resources that are dedicated to cancer. We catalog various online omics-data resources such as The Cancer Genome Atlas (TCGA) along with various TCGA-associated data portals and tools for multi-omics analysis and visualization, the International Cancer Genome Consortium (ICGC), Catalogue of Somatic Mutations in Cancer (COSMIC), The Pathology Atlas, Gene Expression Omnibus (GEO), and PRoteomics IDEntifications (PRIDE). By comparing the strengths and limitations of the respective online resources, we aim to highlight the current biological and technological challenges and possible strategies to overcome these challenges. We outline the available schemes for the integration of the multi-omics dimensions for stratifying cancer patients and biomarker prediction based on the integrated molecular-signatures of cancer. Finally, we propose the multi-omics driven systems-biology approaches to realize the potential of precision onco-medicine as the future of cancer research. We believe this systematic review will encourage scientists and clinicians worldwide to utilize the online resources to explore and integrate the available omics datasets that may provide a window of opportunity to generate new biological insights and contribute to the advancement of the field of cancer research.

11.
Front Cell Dev Biol ; 8: 586479, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33384992

RESUMO

The proteotranscriptomic landscape depends on the transcription, mRNA-turnover, translation, and regulated-destruction of proteins. Gene-specific mRNA-to-protein correlation is the consequence of the dynamic interplays of the different regulatory processes of proteotranscriptomic landscape. So far, the critical impact of mRNA and protein stability on their subsequent correlation on a global scale remained unresolved. Whether the mRNA-to-protein correlations are constrained by their stability and conserved across mammalian species including human is unknown. Moreover, whether the stability-dependent correlation pattern is altered in the tumor has not been explored. To establish the quantitative relationship between stability and correlation between mRNA and protein levels, we performed a multi-omics data integration study across mammalian systems including diverse types of human tissues and cell lines in a genome-wide manner. The current study illuminated an important aspect of the mammalian proteotranscriptomic landscape by providing evidence that stability-constrained mRNA-to-protein correlation follows a hierarchical pattern that remains conserved across different tissues and mammalian species. By analyzing the tumor and non-tumor tissues, we further illustrated that mRNA-to-protein correlations deviate in tumor tissues. By gene-centric analysis, we harnessed the hierarchical correlation patterns to identify altered mRNA-to-protein correlation in tumors and characterized the tumor correlation-enhancing and -repressing genes. We elucidated the transcriptional regulatory circuits controlling the correlation-enhancing and -repressing genes that are associated with metabolic reprogramming and cancer-associated pathways in tumor tissue. By tightly controlling the mRNA-to-protein correlation of specific genes, the transcriptional regulatory circuits may enable the tumor cells to evolve in varying tumor microenvironment. The mRNA-to-protein correlation analysis thus can serve as a unique approach to identify the pathways prioritized by the tumor cells at different clinical stages. The component of transcriptional regulatory circuits identified by the current study can serve as potential candidates for stage-dependent anticancer therapy.

12.
Sci Rep ; 9(1): 12322, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444383

RESUMO

Proteome-centric studies, although have identified numerous lncRNA-encoded polypeptides, lack differential expression analysis of lncRNA-peptidome across primary tissues, cell lines and cancer states. We established a computational-proteogenomic workflow involving re-processing of publicly available LC-MS/MS data, which facilitated the identification of tissue-specific and universally expressed (UExp) lncRNA-polypeptides across 14 primary human tissues and 11 cell lines. The utility of lncRNA-peptidome as cancer-biomarkers was investigated by re-processing LC-MS/MS data from 92 colon-adenocarcinoma (COAD) and 30 normal colon-epithelium tissues. Intriguingly, a significant upregulation of five lncRNA UExp-polypeptides in COAD tissues was observed. Furthermore, clustering of the UExp-polypeptides led to the classification of COAD patients that coincided with the clinical stratification, underlining the prognostic potential of the UExp-polypeptides. Lastly, we identified differential abundance of the UExp-polypeptides in the plasma of prostate-cancer patients highlighting their potential as plasma-biomarker. The analysis of lncRNA-peptidome may pave the way to identify effective tissue/plasma biomarkers for different cancer types.


Assuntos
Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Neoplasias/sangue , Neoplasias/genética , Peptídeos/sangue , Proteoma/metabolismo , RNA Longo não Codificante/sangue , Adenocarcinoma/sangue , Adenocarcinoma/genética , Linhagem Celular , Neoplasias do Colo/sangue , Neoplasias do Colo/genética , Humanos , Masculino , Especificidade de Órgãos , Prognóstico , Neoplasias da Próstata/sangue , Neoplasias da Próstata/genética , Proteogenômica
13.
Biomed Res Int ; 2018: 9836256, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30402498

RESUMO

The acquisition of cancer hallmarks requires molecular alterations at multiple levels including genome, epigenome, transcriptome, proteome, and metabolome. In the past decade, numerous attempts have been made to untangle the molecular mechanisms of carcinogenesis involving single OMICS approaches such as scanning the genome for cancer-specific mutations and identifying altered epigenetic-landscapes within cancer cells or by exploring the differential expression of mRNA and protein through transcriptomics and proteomics techniques, respectively. While these single-level OMICS approaches have contributed towards the identification of cancer-specific mutations, epigenetic alterations, and molecular subtyping of tumors based on gene/protein-expression, they lack the resolving-power to establish the casual relationship between molecular signatures and the phenotypic manifestation of cancer hallmarks. In contrast, the multi-OMICS approaches involving the interrogation of the cancer cells/tissues in multiple dimensions have the potential to uncover the intricate molecular mechanism underlying different phenotypic manifestations of cancer hallmarks such as metastasis and angiogenesis. Moreover, multi-OMICS approaches can be used to dissect the cellular response to chemo- or immunotherapy as well as discover molecular candidates with diagnostic/prognostic value. In this review, we focused on the applications of different multi-OMICS approaches in the field of cancer research and discussed how these approaches are shaping the field of personalized oncomedicine. We have highlighted pioneering studies from "The Cancer Genome Atlas (TCGA)" consortium encompassing integrated OMICS analysis of over 11,000 tumors from 33 most prevalent forms of cancer. Accumulation of huge cancer-specific multi-OMICS data in repositories like TCGA provides a unique opportunity for the systems biology approach to tackle the complexity of cancer cells through the unification of experimental data and computational/mathematical models. In future, systems biology based approach is likely to predict the phenotypic changes of cancer cells upon chemo-/immunotherapy treatment. This review is sought to encourage investigators to bring these different approaches together for interrogating cancer at molecular, cellular, and systems levels.


Assuntos
Pesquisa Biomédica/métodos , Genômica/métodos , Metabolômica/métodos , Neoplasias/genética , Neoplasias/metabolismo , Animais , Humanos , Neoplasias/patologia , Neoplasias/terapia
14.
Mol Syst Biol ; 13(1): 904, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28123004

RESUMO

Signaling through the AKT and ERK pathways controls cell proliferation. However, the integrated regulation of this multistep process, involving signal processing, cell growth and cell cycle progression, is poorly understood. Here, we study different hematopoietic cell types, in which AKT and ERK signaling is triggered by erythropoietin (Epo). Although these cell types share the molecular network topology for pro-proliferative Epo signaling, they exhibit distinct proliferative responses. Iterating quantitative experiments and mathematical modeling, we identify two molecular sources for cell type-specific proliferation. First, cell type-specific protein abundance patterns cause differential signal flow along the AKT and ERK pathways. Second, downstream regulators of both pathways have differential effects on proliferation, suggesting that protein synthesis is rate-limiting for faster cycling cells while slower cell cycles are controlled at the G1-S progression. The integrated mathematical model of Epo-driven proliferation explains cell type-specific effects of targeted AKT and ERK inhibitors and faithfully predicts, based on the protein abundance, anti-proliferative effects of inhibitors in primary human erythroid progenitor cells. Our findings suggest that the effectiveness of targeted cancer therapy might become predictable from protein abundance.


Assuntos
Células Eritroides/citologia , Eritropoetina/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose , Ciclo Celular , Proliferação de Células , Células Cultivadas , Células Eritroides/metabolismo , Humanos , Camundongos , Modelos Teóricos
15.
Ecancermedicalscience ; 6: ed16, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24883085

RESUMO

Cancer is clearly the most deadly disease in the developed world as one in three people develop cancer during their lifetime. The cure for cancer is like the Holy Grail since most of the existing treatments are not effective enough to provide full protection from this disease. In recent years the burgeoning of sophisticated genomic, proteomic and bioinformatics techniques has made it possible for us to get a glimpse of the intricate interplay of numerous cellular genes and regulatory genetic elements that are responsible for the manifestation of cancerous phenotypes. With the use of modern genomic technologies we are now beginning to understand the enormous complexity of cancer. However there are few success stories as far as the treatment of cancer is concerned. For instance the treatments of leukemia and lymphoma have been established and proved to be satisfactory. Despite occasional successes the treatment for most cancers is still a long way from reality. In this editorial, we have addressed several reasons for the difficulties in cancer treatment.

16.
In Silico Biol ; 10(5-6): 235-46, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22430357

RESUMO

A major problem in designing vaccine for the dengue virus has been the high antigenic variability in the envelope protein of different virus strains. In this study, a computational approach was adopted to identify a multi-epitope vaccine candidate against dengue virus that may be suitable for large populations in the dengue-endemic regions. Different bioinformatics tools were exploited that helped the identification of a conserved immunological hot-spot in the dengue envelope protein. The tools also rendered the prediction of immunogenicity and population coverage to the proposed 'in silico' vaccine candidate against dengue. A peptide region, spanning 19 amino acids, was identified in the envelope protein which found to be conserved in all four types of dengue viruses. Ten proteasomal cleavage sites were identified within the 19-mer conserved peptide sequence and a total of 8 overlapping putative cytotoxic T cell (CTL) epitopes were identified. The immunogenicity of these epitopes was evaluated in terms of their binding affinities to and dissociation half-time from respective human leukocyte antigen (HLA) molecules. The HLA allele frequencies were studied among populations in the dengue endemic regions and compared with respect to HLA restriction patterns of the overlapping epitopes. The cumulative population coverage for these epitopes as vaccine candidates was high ranging from approximately 80% to 92%. Structural analysis suggested that a 9-mer epitope fitted well into the peptide-binding groove of HLA-A*0201. In conclusion, the 19-mer epitope cluster was shown to have the potential for use as a vaccine candidate against dengue.


Assuntos
Antígenos Virais/química , Vacinas contra Dengue/química , Dengue/prevenção & controle , Doenças Endêmicas/prevenção & controle , Epitopos de Linfócito T/química , Antígeno HLA-A2/química , Simulação de Acoplamento Molecular , Proteínas do Envelope Viral/química , Sequência de Aminoácidos , Antígenos Virais/imunologia , Sequência Conservada , Dengue/imunologia , Vacinas contra Dengue/imunologia , Vírus da Dengue/química , Vírus da Dengue/imunologia , Epitopos de Linfócito T/imunologia , Antígeno HLA-A2/imunologia , Humanos , Dados de Sequência Molecular , Linfócitos T Citotóxicos/imunologia , Vacinas de Subunidades Antigênicas , Proteínas do Envelope Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA