Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 11(7)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206204

RESUMO

Adipose-derived stem cells (ASCs) have been increasingly used as a versatile source of mesenchymal stem cells (MSCs) for diverse clinical investigations. However, their applications often become complicated due to heterogeneity arising from various factors. Cellular heterogeneity can occur due to: (i) nomenclature and criteria for definition; (ii) adipose tissue depots (e.g., subcutaneous fat, visceral fat) from which ASCs are isolated; (iii) donor and inter-subject variation (age, body mass index, gender, and disease state); (iv) species difference; and (v) study design (in vivo versus in vitro) and tools used (e.g., antibody isolation and culture conditions). There are also actual differences in resident cell types that exhibit ASC/MSC characteristics. Multilineage-differentiating stress-enduring (Muse) cells and dedifferentiated fat (DFAT) cells have been reported as an alternative or derivative source of ASCs for application in regenerative medicine. In this review, we discuss these factors that contribute to the heterogeneity of human ASCs in detail, and what should be taken into consideration for overcoming challenges associated with such heterogeneity in the clinical use of ASCs. Attempts to understand, define, and standardize cellular heterogeneity are important in supporting therapeutic strategies and regulatory considerations for the use of ASCs.


Assuntos
Tecido Adiposo/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Medicina Regenerativa , Animais , Humanos , Especificidade de Órgãos
2.
Stem Cell Res Ther ; 12(1): 109, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33541392

RESUMO

BACKGROUND: Effective stem cell therapy is dependent on the stem cell quality that is determined by their differentiation potential, impairment of which leads to poor engraftment and survival into the target cells. However, limitations in our understanding and the lack of reliable markers that can predict their maturation efficacies have hindered the development of stem cells as an effective therapeutic strategy. Our previous study identified CD10, a pro-adipogenic, depot-specific prospective cell surface marker of human adipose-derived stem cells (ASCs). Here, we aim to determine if CD10 can be used as a prospective marker to predict mature adipocyte quality and play a direct role in adipocyte maturation. METHODS: We first generated 14 primary human subject-derived ASCs and stable immortalized CD10 knockdown and overexpression lines for 4 subjects by the lentiviral transduction system. To evaluate the role of CD10 in adipogenesis, the adipogenic potential of the human subject samples were scored against their respective CD10 transcript levels. Assessment of UCP1 expression levels was performed to correlate CD10 levels to the browning potential of mature ASCs. Quantitative polymerase chain reaction (qPCR) and Western blot analysis were performed to determine CD10-dependent regulation of various targets. Seahorse analysis of oxidative metabolism and lipolysis assay were studied. Lastly, as a proof-of-concept study, we used CD10 as a prospective marker for screening nuclear receptor ligands library. RESULTS: We identified intrinsic CD10 levels as a positive determinant of adipocyte maturation as well as browning potential of ASCs. Interestingly, CD10 regulates ASC's adipogenic maturation non-canonically by modulating endogenous lipolysis without affecting the classical peroxisome proliferator-activated receptor gamma (PPARγ)-dependent adipogenic pathways. Furthermore, our CD10-mediated screening analysis identified dexamethasone and retinoic acid as stimulator and inhibitor of adipogenesis, respectively, indicating CD10 as a useful biomarker for pro-adipogenic drug screening. CONCLUSION: Overall, we establish CD10 as a functionally relevant ASC biomarker, which may be a prerequisite to identify high-quality cell populations for improving metabolic diseases.


Assuntos
Adipócitos , PPAR gama , Adipogenia , Diferenciação Celular , Células Cultivadas , Humanos , Neprilisina , PPAR gama/genética , Estudos Prospectivos , Células-Tronco
3.
Int J Biol Macromol ; 148: 89-101, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31945434

RESUMO

Redox signaling and homeostasis are essential for cell survival and the immune response. Peroxiredoxin (Prx) modulates the level of H2O2 as a redox signal through H2O2 decomposition. The redox activity of thioredoxin (Trx) is required as a reducing equivalent to regenerate Prx. Edwardsiella piscicida is an opportunistic Gram-negative enteric pathogen that secretes a novel Trx-like effector protein, ETAE_2186 (Trxlp). Trxlp has unique structural properties compared with other Trx proteins. In enzymatic and binding assays, we confirmed Trxlp to be redox-inactive due to the low reactivity and flexibility of the resolving cysteine residue, C35, at the active site motif "31WCXXC35". We identified key residues near the active site that are critical for reactivity and flexibility of C35 by site-directed mutagenesis analysis. NMR titration experiment demonstrated prolong inhibitory interaction of Trxlp with Prx1 resulting in the repression of Prx1-mediated H2O2 decomposition leading to increased ROS accumulation in infected host cells. Increased ROS in turn prevented nuclear translocation of NF-κB and inhibition of NF-κB target genes, leading to bacterial survival and enhanced replication inside host cells. Targeting Trxlp-mediated virulence promises to attenuate E. piscicida infection.


Assuntos
Proteínas de Bactérias/metabolismo , Edwardsiella/fisiologia , Peroxirredoxinas/metabolismo , Transdução de Sinais , Tiorredoxinas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sobrevivência Celular , Edwardsiella/genética , Edwardsiella/patogenicidade , Células HEK293 , Homeostase , Humanos , Peróxido de Hidrogênio/metabolismo , Imunidade , Modelos Moleculares , Mutação , NF-kappa B/metabolismo , Oxirredução , Transporte Proteico , Alinhamento de Sequência
4.
Stem Cell Res Ther ; 10(1): 141, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31113471

RESUMO

BACKGROUND: Visceral (VS) fat depot is known to have defective adipogenic functions compared to subcutaneous (SC) fat, but its mechanism of origin is unclear. OBJECTIVE: We tested our hypothesis that the degree of oxidative stress in adipose-derived stem cells (ASCs) from these depots may account for this difference. METHODS: ASCs were isolated from VS (omental region) and SC (abdominal region) fat depots of human subjects undergoing bariatric surgery. ASCs from VS and SC fat were investigated for their cellular characteristics in reactive oxygen species (ROS), metabolism, gene expression, proliferation, senescence, migration, and adipocyte differentiation. ASCs were also treated with antioxidant ascorbic acid (vitamin C). RESULTS: We found that human VS-derived ASCs exhibit excessive oxidative stress characterized by high reactive oxygen species (ROS), compared to SC-derived ASCs. Gene expression analyses indicate that the VS-ASCs exhibit higher levels of genes involved in pro-oxidant and pro-inflammatory pathways and lower levels of genes in antioxidant and anti-inflammatory pathways. VS-ASCs have impaired cellular functions compared to SC-ASCs, such as slower proliferation, early senescence, less migratory activity, and poor adipogenic capability in vitro. Treatment with ascorbic acid decreased ROS levels drastically in VS-ASCs. Ascorbic acid treatment substantially improved proliferation, senescence, migration, and adipogenic capacities of compromised ASCs caused by high ROS. CONCLUSIONS: This finding suggests the fat depot-specific differences of cellular defects originating from stem cell population. Considering clinical potentials of human ASCs for cell therapies, this also offers a possible strategy for improving their therapeutic qualities through antioxidants.


Assuntos
Gordura Intra-Abdominal/transplante , Transplante de Células-Tronco Mesenquimais , Estresse Oxidativo/genética , Gordura Subcutânea/transplante , Cirurgia Bariátrica , Movimento Celular/genética , Proliferação de Células/genética , Senescência Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Inflamação/genética , Inflamação/terapia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
PLoS Biol ; 13(4): e1002116, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25875623

RESUMO

In bacteria, one paradigm for signal transduction is the two-component regulatory system, consisting of a sensor kinase (usually a membrane protein) and a response regulator (usually a DNA binding protein). The EnvZ/OmpR two-component system responds to osmotic stress and regulates expression of outer membrane proteins. In Salmonella, EnvZ/OmpR also controls expression of another two-component system SsrA/B, which is located on Salmonella Pathogenicity Island (SPI) 2. SPI-2 encodes a type III secretion system, which functions as a nanomachine to inject bacterial effector proteins into eukaryotic cells. During the intracellular phase of infection, Salmonella switches from assembling type III secretion system structural components to secreting effectors into the macrophage cytoplasm, enabling Salmonella to replicate in the phagocytic vacuole. Major questions remain regarding how bacteria survive the acidified vacuole and how acidification affects bacterial secretion. We previously reported that EnvZ sensed cytoplasmic signals rather than extracellular ones, as intracellular osmolytes altered the dynamics of a 17-amino-acid region flanking the phosphorylated histidine. We reasoned that the Salmonella cytoplasm might acidify in the macrophage vacuole to activate OmpR-dependent transcription of SPI-2 genes. To address these questions, we employed a DNA-based FRET biosensor ("I-switch") to measure bacterial cytoplasmic pH and immunofluorescence to monitor effector secretion during infection. Surprisingly, we observed a rapid drop in bacterial cytoplasmic pH upon phagocytosis that was not predicted by current models. Cytoplasmic acidification was completely dependent on the OmpR response regulator, but did not require known OmpR-regulated genes such as ompC, ompF, or ssaC (SPI-2). Microarray analysis highlighted the cadC/BA operon, and additional experiments confirmed that it was repressed by OmpR. Acidification was blocked in the ompR null background in a Cad-dependent manner. Acid-dependent activation of OmpR stimulated type III secretion; blocking acidification resulted in a neutralized cytoplasm that was defective for SPI-2 secretion. Based upon these findings, we propose that Salmonella infection involves an acid-dependent secretion process in which the translocon SseB moves away from the bacterial cell surface as it associates with the vacuolar membrane, driving the secretion of SPI-2 effectors such as SseJ. New steps in the SPI-2 secretion process are proposed.


Assuntos
Ácidos/metabolismo , Proteínas de Bactérias/fisiologia , Técnicas Biossensoriais , DNA Bacteriano/análise , Transferência Ressonante de Energia de Fluorescência , Macrófagos/microbiologia , Salmonella/patogenicidade , Citoplasma/metabolismo , Espaço Extracelular/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Macrolídeos/farmacologia , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
6.
J Biol Chem ; 286(45): 39417-30, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21953460

RESUMO

Inorganic phosphate (P(i)) and iron are essential nutrients that are depleted by vertebrates as a protective mechanism against bacterial infection. This depletion, however, is sensed by some pathogens as a signal to turn on the expression of virulence genes. Here, we show that the PhoB-PhoR two-component system senses changes in P(i) concentration, whereas the ferric uptake regulator (Fur) senses changes in iron concentration in Edwardsiella tarda PPD130/91 to regulate the expression of type III and VI secretion systems (T3SS and T6SS) through an E. tarda secretion regulator, EsrC. In sensing low P(i) concentration, PhoB-PhoR autoregulates and activates the phosphate-specific transport operon, pstSCAB-phoU, by binding directly to the Pho box in the promoters of phoB and pstS. PhoB also binds with EsrC simultaneously on the promoter of an E. tarda virulence protein, evpA, to regulate directly the transcription of genes from T6SS. In addition, PhoB requires and interacts with PhoU to activate esrC and suppress fur indirectly through unidentified regulators. Fur, on the other hand, senses high iron concentration and binds directly to the Fur box in the promoter of evpP to inhibit EsrC binding to the same region. In addition, Fur suppresses transcription of phoB, pstSCAB-phoU, and esrC indirectly via unidentified regulators, suggesting negative cross-talk with the Pho regulon. Physical interactions exist between Fur and PhoU and between Fur and EsrC. Our findings suggest that T3SS and T6SS may carry out distinct roles in the pathogenicity of E. tarda by responding to different environmental factors.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Edwardsiella tarda/metabolismo , Edwardsiella tarda/patogenicidade , Infecções por Enterobacteriaceae/metabolismo , Ferro/metabolismo , Fosfatos/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Edwardsiella tarda/genética , Infecções por Enterobacteriaceae/genética , Regulação Bacteriana da Expressão Gênica/genética , Dados de Sequência Molecular , Óperon/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA