Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 19(4): 935-947, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28677296

RESUMO

Primary virulence factors of Pseudomonas syringae pv. tomato DC3000 include the phytotoxin coronatine (COR) and a repertoire of 29 effector proteins injected into plant cells by the type III secretion system (T3SS). DC3000 derivatives differentially producing COR, the T3SS machinery and subsets of key effectors were constructed and assayed in leaves of Nicotiana benthamiana. Bacteria were inoculated by the dipping of whole plants and assayed for population growth and the production of chlorotic spots on leaves. The strains fell into three classes. Class I strains are T3SS+ but functionally effectorless, grow poorly in planta and produce faint chlorotic spots only if COR+ . Class II strains are T3SS- or, if T3SS+ , also produce effectors AvrPtoB and HopM1. Class II strains grow better than class I strains in planta and, if COR+ , produce robust chlorotic spots. Class III strains are T3SS+ and minimally produce AvrPtoB, HopM1 and three other effectors encoded in the P. syringae conserved effector locus. These strains differ from class II strains in growing better in planta, and produce chlorotic spots without COR if the precursor coronafacic acid is produced. Assays for chlorotic spot formation, in conjunction with pressure infiltration of low-level inoculum and confocal microscopy of fluorescent protein-labelled bacteria, revealed that single bacteria in the apoplast are capable of producing colonies and associated leaf spots in a 1 : 1 : 1 manner. However, COR makes no significant contribution to the bacterial colonization of the apoplast, but, instead, enables a gratuitous, semi-quantitative, surface indicator of bacterial growth, which is determined by the strain's effector composition.


Assuntos
Aminoácidos/metabolismo , Indenos/metabolismo , Nicotiana/microbiologia , Folhas de Planta/microbiologia , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidade , Sistemas de Secreção Tipo III/metabolismo , Pseudomonas syringae/genética , Virulência
2.
Plant Direct ; 2(4): e00055, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31245720

RESUMO

Virus-induced gene silencing (VIGS) is an important forward and reverse genetics method for the study of gene function in many plant species, especially Nicotiana benthamiana. However, despite the widespread use of VIGS, a searchable database compiling the phenotypes observed with this method is lacking. Such a database would allow researchers to know the phenotype associated with the silencing of a large number of individual genes without experimentation. We have developed a VIGS phenomics and functional genomics database (VPGD) that has DNA sequence information derived from over 4,000 N. benthamiana VIGS clones along with the associated silencing phenotype for approximately 1,300 genes. The VPGD has a built-in BLAST search feature that provides silencing phenotype information of specific genes. In addition, a keyword-based search function could be used to find a specific phenotype of interest with the corresponding gene, including its Gene Ontology descriptions. Query gene sequences from other plant species that have not been used for VIGS can also be searched for their homologs and silencing phenotype in N. benthamiana. VPGD is useful for identifying gene function not only in N. benthamiana but also in related Solanaceae plants such as tomato and potato. The database is accessible at http://vigs.noble.org.

3.
Methods Mol Biol ; 1615: 473-487, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28667631

RESUMO

An accurate and complete roster of the Type III effector (T3E) proteins translocated by the P. syringae Type III secretion system (T3SS) into host cells is critical to understanding the pathogen's interactions with plants. The adenylate cyclase (Cya) reporter offers a highly sensitive and robust assay for monitoring the translocation of T3Es. T3Es are fused to the calmodulin-dependent adenylate-cyclase domain of CyaA. The T3E targets Cya for translocation through the T3SS into the host cell at which point it is activated by calmodulin and converts adenosine triphosphate into cyclic adenosine monophosphate (cAMP). The T3SS translocation-dependent increase in cAMP concentration in plant cells is then measured with an enzyme-linked immunosorbent assay kit. The Cya reporter can be used to determine whether a candidate protein is translocated by T3SS or to measure relative levels of T3SS translocation in a semiquantitative manner.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo III , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Proteínas de Bactérias/genética , AMP Cíclico/metabolismo , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Genes Reporter , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo
4.
Mol Plant Microbe Interact ; 30(9): 725-738, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28535079

RESUMO

The Pti1 kinase was identified from a reverse genetic screen as contributing to pattern-triggered immunity (PTI) against Pseudomonas syringae pv. tomato (Pst). The tomato genome has two Pti1 genes, referred to as Pti1a and Pti1b. A hairpin-Pti1 (hpPti1) construct was developed and was used to generate two independent stable transgenic tomato lines that had reduced transcript abundance of both genes. In response to P. syringae pv. tomato inoculation, these hpPti1 plants developed more severe disease symptoms, supported higher bacterial populations, and had reduced transcript accumulation of PTI-associated genes, as compared with wild-type plants. In response to two flagellin-derived peptides, the hpPti1 plants produced lesser amounts of reactive oxygen species (ROS) but showed no difference in mitogen-activated protein kinase (MAPK). Synthetic Pti1a and Pti1b genes designed to avoid silencing were transiently expressed in the hpPti1 plants and restored the ability of the plants to produce wild-type levels of ROS. Our results identify a new component of PTI in tomato that, because it affects ROS production but not MAPK signaling, appears to act early in the immune response.


Assuntos
Resistência à Doença , Flagelina/farmacologia , Peptídeos/farmacologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Pseudomonas syringae/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Solanum lycopersicum/enzimologia , Bioensaio , Morte Celular/efeitos dos fármacos , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica , Genes de Plantas , Teste de Complementação Genética , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Doenças das Plantas/genética , Imunidade Vegetal/efeitos dos fármacos , Plantas Geneticamente Modificadas , Pseudomonas syringae/efeitos dos fármacos , Análise de Sequência de RNA
5.
Mol Plant Microbe Interact ; 30(4): 283-294, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28384054

RESUMO

Pseudomonas syringae infects diverse plant species and is widely used as a model system in the study of effector function and the molecular basis of plant diseases. Although the relationship between bacterial metabolism, nutrient acquisition, and virulence has attracted increasing attention in bacterial pathology, it is largely unexplored in P. syringae. The Crc (catabolite repression control) protein is a putative RNA-binding protein that regulates carbon metabolism as well as a number of other factors in the pseudomonads. Here, we show that deletion of crc increased bacterial swarming motility and biofilm formation. The crc mutant showed reduced growth and symptoms in Arabidopsis and tomato when compared with the wild-type strain. We have evidence that the crc mutant shows delayed hypersensitive response (HR) when infiltrated into Nicotiana benthamiana and tobacco. Interestingly, the crc mutant was more susceptible to hydrogen peroxide, suggesting that, in planta, the mutant may be sensitive to reactive oxygen species generated during pathogen-associated molecular pattern-triggered immunity (PTI). Indeed, HR was further delayed when PTI-induced tissues were challenged with the crc mutant. The crc mutant did not elicit an altered PTI response in plants compared with the wild-type strain. We conclude that Crc plays an important role in growth and survival during infection.


Assuntos
Proteínas de Bactérias/metabolismo , Repressão Catabólica , Pseudomonas syringae/patogenicidade , Proteínas Repressoras/metabolismo , Solanum lycopersicum/microbiologia , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Repressão Catabólica/efeitos dos fármacos , Deleção de Genes , Peróxido de Hidrogênio/toxicidade , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/imunologia , Movimento , Mutação/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/efeitos dos fármacos , Polissacarídeos Bacterianos/metabolismo , Pseudomonas syringae/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/genética , Nicotiana/efeitos dos fármacos , Nicotiana/imunologia , Nicotiana/microbiologia , Virulência/efeitos dos fármacos
6.
Cell Host Microbe ; 17(6): 752-62, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26067603

RESUMO

The bacterial pathogen Pseudomonas syringae pv. tomato DC3000 suppresses the two-tiered plant innate immune system by injecting a complex repertoire of type III secretion effector (T3E) proteins. Beyond redundancy and interplay, individual T3Es may interact with multiple immunity-associated proteins, rendering their analysis challenging. We constructed a Pst DC3000 polymutant lacking all 36 T3Es and restored individual T3Es or their mutants to explore the interplay among T3Es. The weakly expressed T3E HopAD1 was sufficient to elicit immunity-associated cell death in Nicotiana benthamiana. HopAD1-induced cell death was suppressed partially by native AvrPtoB and completely by AvrPtoBM3, which has mutations disrupting its E3 ubiquitin ligase domain and two known domains for interacting with immunity-associated kinases. AvrPtoBM3 also gained the ability to interact with the immunity-kinase MKK2, which is required for HopAD1-dependent cell death. Thus, AvrPtoB has alternative, competing mechanisms for suppressing effector-triggered plant immunity. This approach allows the deconvolution of individual T3E activities.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Pseudomonas syringae/genética , Proteínas de Bactérias/genética , Morte Celular , Regulação Bacteriana da Expressão Gênica , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 2/metabolismo , Mutação , Imunidade Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Nicotiana/citologia , Nicotiana/microbiologia , Ubiquitina-Proteína Ligases/metabolismo
7.
Plant Cell ; 25(7): 2748-64, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23903322

RESUMO

Ca(2+) signaling is an early and necessary event in plant immunity. The tomato (Solanum lycopersicum) kinase Pto triggers localized programmed cell death (PCD) upon recognition of Pseudomonas syringae effectors AvrPto or AvrPtoB. In a virus-induced gene silencing screen in Nicotiana benthamiana, we independently identified two components of a Ca(2+)-signaling system, Cbl10 (for calcineurin B-like protein) and Cipk6 (for calcineurin B-like interacting protein kinase), as their silencing inhibited Pto/AvrPto-elicited PCD. N. benthamiana Cbl10 and Cipk6 are also required for PCD triggered by other plant resistance genes and virus, oomycete, and nematode effectors and for host susceptibility to two P. syringae pathogens. Tomato Cipk6 interacts with Cbl10 and its in vitro kinase activity is enhanced in the presence of Cbl10 and Ca(2+), suggesting that tomato Cbl10 and Cipk6 constitute a Ca(2+)-regulated signaling module. Overexpression of tomato Cipk6 in N. benthamiana leaves causes accumulation of reactive oxygen species (ROS), which requires the respiratory burst homolog RbohB. Tomato Cbl10 and Cipk6 interact with RbohB at the plasma membrane. Finally, Cbl10 and Cipk6 contribute to ROS generated during effector-triggered immunity in the interaction of P. syringae pv tomato DC3000 and N. benthamiana. We identify a role for the Cbl/Cipk signaling module in PCD, establishing a mechanistic link between Ca(2+) and ROS signaling in plant immunity.


Assuntos
Imunidade Vegetal/fisiologia , Proteínas de Plantas/metabolismo , Transdução de Sinais/fisiologia , Solanum lycopersicum/metabolismo , Sequência de Aminoácidos , Apoptose/genética , Apoptose/fisiologia , Cálcio/metabolismo , Cálcio/farmacologia , Membrana Celular/metabolismo , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno , Immunoblotting , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Microscopia Confocal , Dados de Sequência Molecular , Filogenia , Imunidade Vegetal/efeitos dos fármacos , Imunidade Vegetal/genética , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica/efeitos dos fármacos , Pseudomonas syringae/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiologia
8.
Cell Microbiol ; 15(4): 601-18, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23107228

RESUMO

Bacterial flagellin is perceived as a microbe (or pathogen)-associated molecular pattern (MAMP or PAMP) by the extracellular pattern recognition receptors, FLS2 and TLR5, of plants and mammals respectively. Flagellin accidently translocated into mammalian cells by pathogen type III secretion systems (T3SSs) is recognized by nucleotide-binding leucine-rich repeat receptor NLRC4 as a pattern of pathogenesis and induces a death-associated immune response. The non-pathogen Pseudomonas fluorescens Pf0-1, expressing a Pseudomonas syringae T3SS, and the plant pathogen P. syringae pv. tomato DC3000 were used to seek evidence of an analogous cytoplasmic recognition system for flagellin in the model plant Nicotiana benthamiana. Flagellin (FliC) was secreted in culture and translocated into plant cells by the T3SS expressed in Pf0-1 and DC3000 and in their ΔflgGHI flagellar pathway mutants. ΔfliC and ΔflgGHI mutants of Pf0-1 and DC3000 were strongly reduced in elicitation of reactive oxygen species production and in immunity induction as indicated by the ability of challenge bacteria inoculated 6 h later to translocate a type III effector-reporter and to elicit effector-triggered cell death. Agrobacterium-mediated transient expression in N. benthamiana of FliC with or without a eukaryotic export signal peptide, coupled with virus-induced gene silencing of FLS2, revealed no immune response that was not FLS2 dependent. Transiently expressed FliC from DC3000 and Pectobacterium carotovorum did notinduce cell death in N. benthamiana, tobacco or tomato leaves. Flagellin is the major Pseudomonas MAMP perceived by N. benthamiana, and although flagellin secretion through the plant cell wall by the T3SS may partially contribute to FLS2-dependent immunity, flagellin in the cytosol does not elicit immune-associated cell death. We postulate that a death response to translocated MAMPs would produce vulnerability to the many necrotrophic pathogens of plants, such as P. carotovorum, which differ from P. syringae and other (hemi)biotrophic pathogens in benefitting from death-associated immune responses.


Assuntos
Sistemas de Secreção Bacterianos , Flagelina/metabolismo , Imunidade Inata , Nicotiana/imunologia , Pseudomonas fluorescens/metabolismo , Pseudomonas syringae/metabolismo , Agrobacterium/genética , Pectobacterium carotovorum/genética , Pectobacterium carotovorum/metabolismo , Pseudomonas fluorescens/genética , Pseudomonas syringae/genética , Receptores Imunológicos/metabolismo , Transformação Genética
9.
Cell Microbiol ; 14(5): 669-81, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22233353

RESUMO

The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non-host tobacco, was found to also suppress the production of defence-associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His(6) -tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1(D299A) non-catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death by DC3000. Our data reveal PsbQ as a contributor to plant immunity responses and a target for pathogen suppression.


Assuntos
Cisteína Proteases/metabolismo , Interações Hospedeiro-Patógeno , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Pseudomonas syringae/enzimologia , Solanum lycopersicum/microbiologia , Fatores de Virulência/metabolismo , Apoptose , Proteínas de Bactérias/metabolismo , Evasão da Resposta Imune , Imunidade Inata , Solanum lycopersicum/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Mapeamento de Interação de Proteínas , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/patogenicidade , Pseudomonas syringae/patogenicidade , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
10.
Proc Natl Acad Sci U S A ; 108(7): 2975-80, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21282655

RESUMO

The virulence of Pseudomonas syringae and many other proteobacterial pathogens is dependent on complex repertoires of effector proteins injected into host cells by type III secretion systems. The 28 well-expressed effector genes in the repertoire of the model pathogen P. syringae pv. tomato DC3000 were deleted to produce polymutant DC3000D28E. Growth of DC3000D28E in Nicotiana benthamiana was symptomless and 4 logs lower than that of DC3000ΔhopQ1-1, which causes disease in this model plant. DC3000D28E seemed functionally effectorless but otherwise WT in diagnostic phenotypes relevant to plant interactions (for example, ability to inject the AvrPto-Cya reporter into N. benthamiana). Various effector genes were integrated by homologous recombination into native loci or by a programmable or random in vivo assembly shuttle (PRIVAS) system into the exchangeable effector locus in the Hrp pathogenicity island of DC3000D28E. The latter method exploited dual adapters and recombination in yeast for efficient assembly of PCR products into programmed or random combinations of multiple effector genes. Native and PRIVAS-mediated integrations were combined to identify a minimal functional repertoire of eight effector genes that restored much of the virulence of DC3000ΔhopQ1-1 in N. benthamiana, revealing a hierarchy in effector function: AvrPtoB acts with priority in suppressing immunity, enabling other effectors to promote further growth (HopM1 and HopE1), chlorosis (HopG1), lesion formation (HopAM1-1), and near full growth and symptom production (AvrE, HopAA1-1, and/or HopN1 functioning synergistically with the previous effectors). DC3000D28E, the PRIVAS method, and minimal functional repertoires provide new resources for probing the plant immune system.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno/genética , Nicotiana/imunologia , Nicotiana/microbiologia , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Proteínas de Bactérias/genética , Primers do DNA/genética , Vetores Genéticos/genética , Ilhas Genômicas/genética , Reação em Cadeia da Polimerase , Especificidade da Espécie , Nicotiana/metabolismo , Virulência
11.
Mol Plant Microbe Interact ; 23(8): 991-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20615110

RESUMO

Understanding the molecular basis of plant responses to pathogen-associated molecular patterns (PAMPs) is an active area of research in the field of plant-microbe interactions. A growing number of plant genes involved in various steps of PAMP-triggered immunity (PTI) pathways and microbial factors involved in the elicitation or suppression of PTI have been identified. These studies have largely relied on Arabidopsis thaliana and, therefore, most of the PTI assays have been developed and optimized for that model plant system. Although PTI is a conserved feature among plants, the response spectra vary across different species. Thus, there is a need for robust PTI assays in other pathosystems, such as those involving Solanaceae plant-pathogen interactions, which include many economically important plants and their diseases. We have optimized molecular, cellular, and whole-plant methods to measure PTI responses in two widely studied solanaceous species, tomato (Solanum lycopersicum) and Nicotiana benthamiana. Here, we provide detailed protocols for measuring various PTI-associated phenotypes, including bacterial populations after pretreatment of leaves with PAMPs, induction of reporter genes, callose deposition, activation of mitogen-activated protein kinases, and a luciferase-based reporter system. These methods will facilitate limited genetic screens and detailed characterization of potential PTI-related genes in model and economically important Solanaceae spp.-pathogen interactions.


Assuntos
Nicotiana/imunologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Infecções Bacterianas/imunologia , Infecções Bacterianas/patologia , Parede Celular/microbiologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Doenças das Plantas/imunologia , Folhas de Planta/microbiologia , Protoplastos/microbiologia , Nicotiana/microbiologia
12.
Mol Plant Microbe Interact ; 23(6): 715-26, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20459311

RESUMO

In order to identify components of pathogen-associated molecular pattern-triggered immunity (PTI) pathways in Nicotiana benthamiana, we conducted a large-scale forward-genetics screen using virus-induced gene silencing and a cell-death-based assay for assessing PTI. The assay relied on four combinations of PTI-inducing nonpathogens and cell-death-causing challenger pathogens and was first validated in plants silenced for FLS2 or BAK1. Over 3,200 genes were screened and 14 genes were identified that, when silenced, compromised PTI as judged by the cell-death-based assay. Further analysis indicated that the 14 genes were not involved in a general cell death response. A subset of the genes was found to act downstream of FLS2-mediated PTI induction, and silencing of three genes compromised production of reactive oxygen species in leaves exposed to flg22. The 14 genes encode proteins with potential functions in defense and hormone signaling, protein stability and degradation, energy and secondary metabolism, and cell wall biosynthesis and provide a new resource to explore the molecular basis for the involvement of these processes in PTI.


Assuntos
Regulação da Expressão Gênica de Plantas/imunologia , Nicotiana/genética , Nicotiana/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia , Morte Celular , Inativação Gênica , Biblioteca Genômica , Interações Hospedeiro-Patógeno , Folhas de Planta/citologia , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio
13.
J Vis Exp ; (28)2009 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-19516240

RESUMO

RNA interference (RNAi) is a highly specific gene-silencing phenomenon triggered by dsRNA. This silencing mechanism uses two major classes of RNA regulators: microRNAs, which are produced from non-protein coding genes and short interfering RNAs (siRNAs). Plants use RNAi to control transposons and to exert tight control over developmental processes such as flower organ formation and leaf development. Plants also use RNAi to defend themselves against infection by viruses. Consequently, many viruses have evolved suppressors of gene silencing to allow their successful colonization of their host. Virus-induced gene silencing (VIGS) is a method that takes advantage of the plant RNAi-mediated antiviral defense mechanism. In plants infected with unmodified viruses the mechanism is specifically targeted against the viral genome. However, with virus vectors carrying sequences derived from host genes, the process can be additionally targeted against the corresponding host mRNAs. VIGS has been adapted for high-throughput functional genomics in plants by using the plant pathogen Agrobacterium tumefaciens to deliver, via its Ti plasmid, a recombinant virus carrying the entire or part of the gene sequence targeted for silencing. Systemic virus spread and the endogenous plant RNAi machinery take care of the rest. dsRNAs corresponding to the target gene are produced and then cleaved by the ribonuclease Dicer into siRNAs of 21 to 24 nucleotides in length. These siRNAs ultimately guide the RNA-induced silencing complex (RISC) to degrade the target transcript. Different vectors have been employed in VIGS and one of the most frequently used is based on tobacco rattle virus (TRV). TRV is a bipartite virus and, as such, two different A. tumefaciens strains are used for VIGS. One carries pTRV1, which encodes the replication and movement viral functions while the other, pTRV2, harbors the coat protein and the sequence used for VIGS. Inoculation of Nicotiana benthamiana and tomato seedlings with a mixture of both strains results in gene silencing. Silencing of the endogenous phytoene desaturase (PDS) gene, which causes photobleaching, is used as a control for VIGS efficiency. It should be noted, however, that silencing in tomato is usually less efficient than in N. benthamiana. RNA transcript abundance of the gene of interest should always be measured to ensure that the target gene has efficiently been down-regulated. Nevertheless, heterologous gene sequences from N. benthamiana can be used to silence their respective orthologs in tomato and vice versa.


Assuntos
Inativação Gênica , Nicotiana/genética , Vírus de Plantas/genética , Interferência de RNA , Solanum lycopersicum/genética , Solanum lycopersicum/virologia , Nicotiana/virologia
14.
J Biosci ; 34(6): 953-62, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20093748

RESUMO

Variations in transgene expression due to position effect and copy number are normalized when analysing and comparing the strengths of different promoters. In such experiments, the promoter to be tested is placed upstream to a reporter gene and a second expression cassette is introduced in a linked fashion in the same transfer DNA (T-DNA). Normalization in the activity of the test promoter is carried out by calculating the ratio of activities of the test and reference promoters. When an appropriate number of independent transgenic events are analysed, normalization facilitates assessment of the relative strengths of the test promoters being compared. In this study, using different modified versions of the Cauliflower Mosaic Virus (CaMV) 35S promoter expressing the reporter gene beta-glucuronidase (gus) (test cassette) linked to a chloramphenicol acetyl transferase (cat) gene under the wild-type 35S promoter (reference cassette) in transgenic tobacco lines, we observed that cat gene expression varied depending upon the strength of the modified 35S promoter expressing the gus gene. The 35S promoter in the reference cassette was found to have been upregulated in cases where the modified 35S promoter was weaker than the wild-type 35S promoter. Many studies have been carried out in different organisms to study the phenomenon of transcriptional interference, which refers to the reduced expression of the downstream promoter by a closely linked upstream promoter. However, we observed a positive interaction wherein the weakened activity of a promoter led to upregulation of a contiguous promoter. These observations suggest that, in situations where the promoters of the test and reference gene share the same transcription factors, the activity of the test promoter can influence the activity of the reference promoter in a way that the test promoter's strength is underestimated when normalized by the reference promoter.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes Reporter , Nicotiana/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Sequência de Bases , Caulimovirus/genética , Cloranfenicol O-Acetiltransferase/genética , Glucuronidase/genética , Dados de Sequência Molecular , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/anatomia & histologia , Nicotiana/metabolismo
15.
Plant Biotechnol J ; 5(6): 696-708, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17608668

RESUMO

The cauliflower mosaic virus 35S (35S) promoter is used extensively for transgene expression in plants. The promoter has been delineated into different subdomains based on deletion analysis and gain-of-function studies. However, cis-elements important for promoter activity have been identified only in the domains B1 (as-2 element), A1 (as-1 element) and minimal promoter (TATA box). No cis-elements have been described in subdomains B2-B5, although these are reported to be important for the overall activity of the 35S promoter. We have re-evaluated the contribution of three of these subdomains, namely B5, B4 and B2, to 35S promoter activity by developing several modified promoters. The analysis of beta-glucuronidase gene expression driven by the modified promoters in different tissues of primary transgenic tobacco lines, as well as in seedlings of the T(1) generation, revealed new facets about the functional organization of the 35S promoter. This study suggests that: (i) the 35S promoter truncated up to -301 functions in a similar manner to the -343 (full-length) 35S promoter; (ii) the Dof core and I-box core observed in the subdomain B4 are important for 35S promoter activity; and (iii) the subdomain B2 is essential for maintaining an appropriate distance between the proximal and distal regions of the 35S promoter. These observations will aid in the development of functional synthetic 35S promoters with decreased sequence homology. Such promoters can be used to drive multiple transgenes without evoking promoter homology-based gene silencing when attempting gene stacking.


Assuntos
Caulimovirus/genética , Regiões Promotoras Genéticas/fisiologia , Expressão Gênica , Mutação , Plantas Geneticamente Modificadas/virologia , Projetos de Pesquisa , Nicotiana/genética , Nicotiana/virologia
16.
Plant Cell ; 15(12): 3033-50, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14630974

RESUMO

The tomato transcription factor Pti4, an ethylene-responsive factor (ERF), interacts physically with the disease resistance protein Pto and binds the GCC box cis element that is present in the promoters of many pathogenesis-related (PR) genes. We reported previously that Arabidopsis plants expressing Pti4 constitutively express several GCC box-containing PR genes and show reduced disease symptoms compared with wild-type plants after inoculation with Pseudomonas syringae pv tomato or Erysiphe orontii. To gain insight into how genome-wide gene expression is affected by Pti4, we used serial analysis of gene expression (SAGE) to compare transcripts in wild-type and Pti4-expressing Arabidopsis plants. SAGE provided quantitative measurements of >20,000 transcripts and identified the 50 most highly expressed genes in Arabidopsis vegetative tissues. Comparison of the profiles from wild-type and Pti4-expressing Arabidopsis plants revealed 78 differentially abundant transcripts encoding defense-related proteins, protein kinases, ribosomal proteins, transporters, and two transcription factors (TFs). Many of the genes identified were expressed differentially in wild-type Arabidopsis during infection by Pseudomonas syringae pv tomato, supporting a role for them in defense-related processes. Unexpectedly, the promoters of most Pti4-regulated genes did not have a GCC box. Chromatin immunoprecipitation experiments confirmed that Pti4 binds in vivo to promoters lacking this cis element. Potential binding sites for ERF, MYB, and GBF TFs were present in statistically significantly increased numbers in promoters regulated by Pti4. Thus, Pti4 appears to regulate gene expression directly by binding the GCC box and possibly a non-GCC box element and indirectly by either activating the expression of TF genes or interacting physically with other TFs.


Assuntos
Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica/métodos , Doenças das Plantas/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Ligação G-Box , Regulação da Expressão Gênica de Plantas , Imunidade Inata/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Pseudomonas/crescimento & desenvolvimento , Elementos de Resposta/genética , Fatores de Transcrição/metabolismo
17.
Plant Physiol ; 132(2): 988-98, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12805627

RESUMO

The cauliflower mosaic virus 35S (35S) promoter has been extensively used for the constitutive expression of transgenes in dicotyledonous plants. The repetitive use of the same promoter is known to induce transgene inactivation due to promoter homology. As a way to circumvent this problem, we tested two different strategies for the development of synthetic promoters that are functionally equivalent but have a minimum sequence homology. Such promoters can be generated by (a) introducing known cis-elements in a novel or synthetic stretch of DNA or (b) "domain swapping," wherein domains of one promoter can be replaced with functionally equivalent domains from other heterologous promoters. We evaluated the two strategies for promoter modifications using domain A (consisting of minimal promoter and subdomain A1) of the 35S promoter as a model. A set of modified 35S promoters were developed whose strength was compared with the 35S promoter per se using beta-glucuronidase as the reporter gene. Analysis of the expression of the reporter gene in transient assay system showed that domain swapping led to a significant fall in promoter activity. In contrast, promoters developed by placing cis-elements in a novel DNA context showed levels of expression comparable with that of the 35S. Two promoter constructs Mod2A1T and Mod3A1T were then designed by placing the core sequences of minimal promoter and subdomain A1 in divergent DNA sequences. Transgenics developed in tobacco (Nicotiana tabacum) with the two constructs and with 35S as control were used to assess the promoter activity in different tissues of primary transformants. Mod2A1T and Mod3A1T were found to be active in all of the tissues tested, at levels comparable with that of 35S. Further, the expression of the Mod2A1T promoter in the seedlings of the T1 generation was also similar to that of the 35S promoter. The present strategy opens up the possibility of creating a set of synthetic promoters with minimum sequence homology and with expression levels comparable with the wild-type prototype by modifying sequences present between cis-elements for transgene expression in plants.


Assuntos
Caulimovirus/genética , DNA de Plantas/genética , Nicotiana/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Rhizobium/genética , Homologia de Sequência do Ácido Nucleico , Células Cultivadas , Eletroporação , Vetores Genéticos , Reação em Cadeia da Polimerase/métodos , Protoplastos/fisiologia , TATA Box
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA