Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(19)2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37830597

RESUMO

Glioblastoma (GBM), the most common primary malignant brain tumor, is a highly lethal form of cancer with a very limited set of treatment options. High heterogeneity in the tumor cell population and the invasive nature of these cells decrease the likely efficacy of traditional cancer treatments, thus requiring research into novel treatment options. The use of oncolytic viruses as potential therapeutics has been researched for some time. Zika virus (ZIKV) has demonstrated oncotropism and oncolytic effects on GBM stem cells (GSCs). To address the need for safe and effective GBM treatments, we designed an attenuated ZIKV strain (ZOL-1) that does not cause paralytic or neurological diseases in mouse models compared with unmodified ZIKV. Importantly, we found that patient-derived GBM tumors exhibited susceptibility (responders) and non-susceptibility (non-responders) to ZOL-1-mediated tumor cell killing, as evidenced by differential apoptotic cell death and cell viability upon ZOL-1 treatment. The oncolytic effect observed in responder cells was seen both in vitro in neurosphere models and in vivo upon xenograft. Finally, we observed that the use of ZOL-1 as combination therapy with multiple PI3K-AKT inhibitors in non-responder GBM resulted in enhanced chemotherapeutic efficacy. Altogether, this study establishes ZOL-1 as a safe and effective treatment against GBM and provides a foundation to conduct further studies evaluating its potential as an effective adjuvant with other chemotherapies and kinase inhibitors.


Assuntos
Glioblastoma , Terapia Viral Oncolítica , Infecção por Zika virus , Zika virus , Animais , Camundongos , Humanos , Glioblastoma/metabolismo , Zika virus/fisiologia , Terapia Viral Oncolítica/métodos , Fosfatidilinositol 3-Quinases
2.
Viruses ; 14(11)2022 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-36366559

RESUMO

New variants of SARS-CoV-2 continue to evolve. The novel SARS-CoV-2 variant of concern (VOC) B.1.1.529 (Omicron) was particularly menacing due to the presence of numerous consequential mutations. In this study, we reviewed about 12 million SARS-CoV-2 genomic and associated metadata using extensive bioinformatic approaches to understand how evolutionary and mutational changes affect Omicron variant properties. Subsampled global data based analysis of molecular clock in the phylogenetic tree showed 29.56 substitutions per year as the evolutionary rate of five VOCs. We observed extensive mutational changes in the spike structural protein of the Omicron variant. A total of 20% of 7230 amino acid and structural changes exclusive to Omicron's spike protein were detected in the receptor binding domain (RBD), suggesting differential selection pressures exerted during evolution. Analyzing key drug targets revealed mutation-derived differential binding affinities between Delta and Omicron variants. Nine single-RBD substitutions were detected within the binding site of approved therapeutic monoclonal antibodies. T-cell epitope prediction revealed eight immunologically important functional hotspots in three conserved non-structural proteins. A universal vaccine based on these regions may likely protect against all these SARS-CoV-2 variants. We observed key structural changes in the spike protein, which decreased binding affinities, indicating that these changes may help the virus escape host cellular immunity. These findings emphasize the need for continuous genomic surveillance of SARS-CoV-2 to better understand how novel mutations may impact viral spread and disease outcome.


Assuntos
Antivirais , COVID-19 , Evasão da Resposta Imune , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/imunologia , COVID-19/virologia , Mutação , Filogenia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral/genética
3.
Microbiol Spectr ; 10(5): e0113722, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36169338

RESUMO

Zika virus (ZIKV), a mosquito-borne human pathogen, causes dire congenital brain developmental abnormalities in children of infected mothers. The global health crisis precipitated by this virus has led to a concerted effort to develop effective therapies and prophylactic measures although, unfortunately, not very successfully. The error-prone nature of RNA viral genome replication tends to promote evolution of novel viral strains, which could cause epidemics and pandemics. As such, our objective was to develop a safe and effective replication-deficient ZIKV vector-based vaccine candidate. We approached this by generating a ZIKV vector containing only the nonstructural (NS) 5'-untranslated (UTR)-NS-3' UTR sequences, with the structural proteins capsid (C), precursor membrane (prM), and envelope (E) (CprME) used as a packaging system. We efficiently packaged replication-deficient Zika vaccine particles in human producer cells and verified antigen expression in vitro. In vivo studies showed that, after inoculation in neonatal mice, the Zika vaccine candidate (ZVAX) was safe and did not produce any replication-competent revertant viruses. Immunization of adult, nonpregnant mice showed that ZVAX protected mice from lethal challenge by limiting viral replication. We then evaluated the safety and efficacy of ZVAX in pregnant mice, where it was shown to provide efficient maternal and fetal protection against Zika disease. Mass cytometry analysis showed that vaccinated pregnant animals had high levels of splenic CD8+ T cells and effector memory T cell responses with reduced proinflammatory cell responses, suggesting that endogenous expression of NS proteins by ZVAX induced cellular immunity against ZIKV NS proteins. We also investigated humoral immunity against ZIKV, which is potentially induced by viral proteins present in ZVAX virions. We found no significant difference in neutralizing antibody titer in vaccinated or unvaccinated challenged animals; therefore, it is likely that cellular immunity plays a major role in ZVAX-mediated protection against ZIKV infection. In conclusion, we demonstrated ZVAX as an effective inducer of protective immunity against ZIKV, which can be further evaluated for potential prophylactic application in humans. IMPORTANCE This research is important as it strives to address the critical need for effective prophylactic measures against the outbreak of Zika virus (ZIKV) and outlines an important vaccine technology that could potentially be used to induce immune responses against other pandemic-potential viruses.


Assuntos
Vacinas Virais , Infecção por Zika virus , Zika virus , Gravidez , Feminino , Criança , Camundongos , Humanos , Animais , Zika virus/genética , Infecção por Zika virus/prevenção & controle , Linfócitos T CD8-Positivos , Regiões 3' não Traduzidas , Vacinas Virais/genética , Anticorpos Antivirais , Proteínas do Envelope Viral/genética , Mosquitos Vetores , Anticorpos Neutralizantes , Modelos Animais de Doenças
4.
J Drugs Dermatol ; 17(8): 905-907, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30124732

RESUMO

Exposure to various types of ultraviolet (UV) radiation from the sun has been linked to skin cancer. Use of sunscreen can reduce the damaging and carcinogenic effects of UV radiation. However, multiple chemicals in sunscreen can trigger allergic responses, making people less inclined to use sunscreen. Thus, finding natural, plant-based alternatives to sunscreen with similar efficacy has become an important area of research. Myrrh oil, extracted from the shrub Commiphora myrrha, has been used in the treatment of topical wounds and studies have shown that it may provide protection against solar radiation. This study sought to further investigate if C. myrrha oil can confer protection against UV radiation. A UV-sensitive strain of Saccharomyces cerevisiae was grown in petri dishes with one half covered by aluminum foil and the other half covered by clear polyethylene food wrap. The polyethylene half was treated with either SPF 15 or SPF 30 sunscreen, C. myrrha oil or a combination of C. myrrha oil and either sunscreen. The plates were exposed to sunlight. Colony death was quantified using visual estimation. While UV blocking by C. myrrha oil alone was not as effective as that by the synthetic sunscreen, the 1:1 combination of C. myrrha oil and SPF 15 sunblock was significantly more effective than SPF 15 sunblock alone to prevent S. cerevisiae death. These data suggest that naturally-based sunscreens supplemented with synthetic UV deterrents may provide a more holistic approach to prevent UV-induced skin damage. J Drugs Dermatol. 2018;17(8):905-907.


Assuntos
Produtos Biológicos/administração & dosagem , Commiphora , Fator de Proteção Solar , Protetores Solares/administração & dosagem , Terpenos/administração & dosagem , Raios Ultravioleta/efeitos adversos , Produtos Biológicos/isolamento & purificação , Humanos , Projetos Piloto , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos da radiação , Neoplasias Cutâneas/prevenção & controle , Luz Solar/efeitos adversos , Protetores Solares/isolamento & purificação , Terpenos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA