Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sleep ; 45(8)2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35512227

RESUMO

STUDY OBJECTIVES: To investigate sleep patterns in the camel by combining behavioral and polysomnography (PSG) methods. METHODS: A noninvasive PSG study was conducted over four nights on four animals. Additionally, video recordings were used to monitor the sleep behaviors associated with different vigilance states. RESULTS: During the night, short periods of sporadic sleep-like behavior corresponding to a specific posture, sternal recumbency (SR) with the head lying down on the ground, were observed. The PSG results showed rapid shifts between five vigilance states, including wakefulness, drowsiness, rapid eye movement (REM) sleep, non-REM (NREM) sleep, and rumination. The camels typically slept only 1.7 hours per night, subdivided into 0.5 hours of REM sleep and 1.2 hours of NREM sleep. Camels spent most of the night being awake (2.3 hours), ruminating (2.4 hours), or drowsing (1.9 hours). Various combinations of transitions between the different vigilance states were observed, with a notable transition into REM sleep directly from drowsiness (9%) or wakefulness (4%). Behavioral postures were found to correlate with PSG vigilance states, thereby allowing a reliable prediction of the sleep stage based on SR and the head position (erected, motionless, or lying down on the ground). Notably, 100% of REM sleep occurred during the Head Lying Down-SR posture. CONCLUSIONS: The camel is a diurnal species with a polyphasic sleep pattern at night. The best correlation between PSG and ethogram data indicates that sleep duration can be predicted by the behavioral method, provided that drowsiness is considered a part of sleep.


Assuntos
Camelus , Eletroencefalografia , Animais , Eletroencefalografia/métodos , Polissonografia/métodos , Sono , Fases do Sono , Vigília
2.
Chronobiol Int ; 35(12): 1735-1741, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30036106

RESUMO

BACKGROUND: Propofol anesthesia triggers phase-advances of circadian rhythms controlled by the suprachiasmatic nuclei (SCN), the master clock. Besides, inhalational anesthesia has been associated with a subsequent reduction of Per2 mRNA levels in the whole brain of rodents. The acute effects of propofol anesthesia per se on the SCN molecular clockwork remain unclear. Here we aim to study the expression of Per1 and Per2 clock genes in the SCN of rats exposed to constant darkness after a single dose of propofol. METHODS: Thirty 2-months old rats were randomly divided into 2 groups receiving a single dose of either 120 mg/kg propofol 1% (n=15), or intralipid® 10% (n=15) in late day (projected circadian time (CT) 10, i.e., 10h after the expected time of lights on). Thereafter, rat brains were sampled in darkness 1h, 2h or 3h after the treatment (projected CT11, CT12 or CT13). Expression of Per1 and Per2 mRNA was analyzed by in situ hybridization in SCN coronal sections. RESULTS: Per1 expression was affected by time and treatment. Per1 expression in the SCN after propofol treatment decreased at CT11 and CT12 when compared to the vehicle group. For Per2 expression, we observed only a treatment effect. Observed in dark conditions without hypothermia or/and concomitant surgery, such down-regulation of clock genes Per is only correlated to propofol treatment. This may explain "jet-lag-like" symptoms described by patients after anesthesia. CONCLUSION: We show here for the first time that short-term propofol anesthesia leads to a transient down-regulation of Per1 and Per2 expression in the SCN.


Assuntos
Anestesia , Ritmo Circadiano/fisiologia , Regulação para Baixo/fisiologia , Propofol/farmacologia , Anestesia/efeitos adversos , Animais , Relógios Biológicos/efeitos dos fármacos , Relógios Biológicos/fisiologia , Expressão Gênica/fisiologia , Masculino , Proteínas Circadianas Period/metabolismo , RNA Mensageiro/metabolismo , Ratos , Núcleo Supraquiasmático/metabolismo , Fatores de Transcrição/metabolismo
3.
Brain Res ; 1679: 116-124, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29196219

RESUMO

Reciprocal interactions closely connect energy metabolism with circadian rhythmicity. Altered clockwork and circadian desynchronization are often linked with impaired energy regulation. Conversely, metabolic disturbances have been associated with altered autonomic and hormonal rhythms. The effects of high-energy (HE) diet on the master clock in the suprachiasmatic nuclei (SCN) remain unclear.This question was addressed in the Sand rat (Psammomys obesus), a non-insulin-dependent diabetes mellitus (NIDDM) animal model. The aim of this work was to determine whether enriched diet in Psammomys affects locomotor activity rhythm, as well as daily oscillations in the master clock of the SCN and in an extra-SCN brain oscillator, the piriform cortex. Sand rats were fed during 3 months with either low or HE diet. Vasoactive intestinal peptide (VIP), vasopressin (AVP) and CLOCK protein cycling were studied by immunohistochemistry and running wheel protocol was used for behavioral analysis. High energy feeding dietary triggered hyperinsulinemia, impaired insulin/glucose ratio and disruption in pancreatic hormonal rhythms. Circadian disturbances in hyper-insulinemic animals include a lengthened rest/activity rhythm in constant darkness, as well as disappearance of daily rhythmicity of VIP, AVP and the circadian transcription factor CLOCK within the suprachiasmatic clock. In addition, daily rhythmicity of VIP and CLOCK was abolished by HE diet in a secondary brain oscillator, the piriform cortex. Our findings highlight a major impact of diabetogenic diet on central and peripheral rhythmicity. The Psammomys model will be instrumental to better understand the functional links between circadian clocks, glucose intolerance and insulin resistance state.


Assuntos
Relógios Biológicos/fisiologia , Encéfalo/fisiologia , Proteínas CLOCK/metabolismo , Dieta , Regulação da Expressão Gênica/fisiologia , Resistência à Insulina/fisiologia , Animais , Peso Corporal , Encéfalo/efeitos dos fármacos , Gorduras na Dieta/administração & dosagem , Fibras na Dieta/administração & dosagem , Ingestão de Alimentos/fisiologia , Gerbillinae , Somatostatina/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Vasopressinas/metabolismo
4.
Front Neuroanat ; 11: 103, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29249943

RESUMO

In mammals, biological rhythms are driven by a master circadian clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Recently, we have demonstrated that in the camel, the daily cycle of environmental temperature is able to entrain the master clock. This raises several questions about the structure and function of the SCN in this species. The current work is the first neuroanatomical investigation of the camel SCN. We carried out a cartography and cytoarchitectural study of the nucleus and then studied its cell types and chemical neuroanatomy. Relevant neuropeptides involved in the circadian system were investigated, including arginine-vasopressin (AVP), vasoactive intestinal polypeptide (VIP), met-enkephalin (Met-Enk), neuropeptide Y (NPY), as well as oxytocin (OT). The neurotransmitter serotonin (5-HT) and the enzymes tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) were also studied. The camel SCN is a large and elongated nucleus, extending rostrocaudally for 9.55 ± 0.10 mm. Based on histological and immunofluorescence findings, we subdivided the camel SCN into rostral/preoptic (rSCN), middle/main body (mSCN) and caudal/retrochiasmatic (cSCN) divisions. Among mammals, the rSCN is unusual and appears as an assembly of neurons that protrudes from the main mass of the hypothalamus. The mSCN exhibits the triangular shape described in rodents, while the cSCN is located in the retrochiasmatic area. As expected, VIP-immunoreactive (ir) neurons were observed in the ventral part of mSCN. AVP-ir neurons were located in the rSCN and mSCN. Results also showed the presence of OT-ir and TH-ir neurons which seem to be a peculiarity of the camel SCN. OT-ir neurons were either scattered or gathered in one isolated cluster, while TH-ir neurons constituted two defined populations, dorsal parvicellular and ventral magnocellular neurons, respectively. TH colocalized with VIP in some rSCN neurons. Moreover, a high density of Met-Enk-ir, 5-HT-ir and NPY-ir fibers were observed within the SCN. Both the cytoarchitecture and the distribution of neuropeptides are unusual in the camel SCN as compared to other mammals. The presence of OT and TH in the camel SCN suggests their role in the modulation of circadian rhythms and the adaptation to photic and non-photic cues under desert conditions.

6.
J Neurosci ; 37(16): 4343-4358, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28320839

RESUMO

Circadian rhythms in nocturnal and diurnal mammals are primarily synchronized to local time by the light/dark cycle. However, nonphotic factors, such as behavioral arousal and metabolic cues, can also phase shift the master clock in the suprachiasmatic nuclei (SCNs) and/or reduce the synchronizing effects of light in nocturnal rodents. In diurnal rodents, the role of arousal or insufficient sleep in these functions is still poorly understood. In the present study, diurnal Sudanian grass rats, Arvicanthis ansorgei, were aroused at night by sleep deprivation (gentle handling) or caffeine treatment that both prevented sleep. Phase shifts of locomotor activity were analyzed in grass rats transferred from a light/dark cycle to constant darkness and aroused in early night or late night. Early night, but not late night, sleep deprivation induced a significant phase shift. Caffeine on its own induced no phase shifts. Both sleep deprivation and caffeine treatment potentiated light-induced phase delays and phase advances in response to a 30 min light pulse, respectively. Sleep deprivation in early night, but not late night, potentiated light-induced c-Fos expression in the ventral SCN. Caffeine treatment in midnight triggered c-Fos expression in dorsal SCN. Both sleep deprivation and caffeine treatment potentiated light-induced c-Fos expression in calbindin-containing cells of the ventral SCN in early and late night. These findings indicate that, in contrast to nocturnal rodents, behavioral arousal induced either by sleep deprivation or caffeine during the sleeping period potentiates light resetting of the master circadian clock in diurnal rodents, and activation of calbindin-containing suprachiasmatic cells may be involved in this effect.SIGNIFICANCE STATEMENT Arousing stimuli have the ability to regulate circadian rhythms in mammals. Behavioral arousal in the sleeping period phase shifts the master clock in the suprachiasmatic nuclei and/or slows down the photic entrainment in nocturnal animals. How these stimuli act in diurnal species remains to be established. Our study in a diurnal rodent, the Grass rat, indicates that sleep deprivation in the early rest period induces phase delays of circadian locomotor activity rhythm. Contrary to nocturnal rodents, both sleep deprivation and caffeine-induced arousal potentiate the photic entrainment in a diurnal rodent. Such enhanced light-induced circadian responses could be relevant for developing chronotherapeutic strategies.


Assuntos
Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Relógios Circadianos/efeitos dos fármacos , Privação do Sono/fisiopatologia , Animais , Luz , Masculino , Murinae , Fotoperíodo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiologia
7.
Biochimie ; 124: 198-206, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26144489

RESUMO

Growing evidence links metabolic disorders to circadian alterations. Genetically obese db/db mice, lacking the long isoform of leptin receptor, are a recognized model of type 2 diabetes. In this study, we aimed at characterizing the potential circadian alterations of db/db mice in comparison to db/+ control mice. By using telemetry devices, we first reported arrhythmicity in general activity of most db/db mice under both light-dark cycle and constant darkness, while their rhythm of body temperature is less dramatically disrupted. Water access restricted to nighttime restores significant rhythmicity in behaviorally arrhythmic db/db mice, indicating a masking effect of polydipsia when water is available ad libitum. Endogenous period of temperature rhythm under constant dark conditions is significantly increased (+30 min) in db/db compared with db/+ mice. Next, we studied the oscillations of clock proteins (PER1, PER2 and BMAL1) in the suprachiasmatic nuclei (SCN), the site of the master clock, and detected no difference according to the genotype. Furthermore, c-FOS and P-ERK1/2 expression in response to a light pulse in late night was significantly increased (+80 and +55%, respectively) in the SCN of these diabetic mice. We previously showed that, in addition to altered activity rhythms, db/db mice exhibit altered feeding rhythm. Therefore, we investigated daily patterns of clock protein expression in medial hypothalamic oscillators involved in feeding behavior (arcuate nucleus, ventro- and dorso-medial hypothalamic nuclei). Compared with db/+ mice, very subtle or no difference in oscillations of PER1 and BMAL1 is found in the medial hypothalamus. Although we did not find a clear link between altered hypothalamic clockwork and behavioral rhythms in db/db mice, our results highlight a lengthened endogenous period and altered photic integration in these genetically obese and diabetic mice.


Assuntos
Temperatura Corporal , Ritmo Circadiano , Regulação da Expressão Gênica , Hipotálamo/metabolismo , Proteínas Circadianas Period/biossíntese , Fenótipo , Animais , Camundongos , Camundongos Obesos , Proteína Quinase 3 Ativada por Mitógeno/biossíntese , Proteínas Proto-Oncogênicas c-fos/biossíntese , Especificidade da Espécie
8.
Chronobiol Int ; 32(5): 596-607, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25938796

RESUMO

C-Fos expression in the suprachiasmatic nucleus (SCN) and phase shifts of the activity rhythm following photic stimulation were investigated in Djungarian hamsters (Phodopus sungorus) of two different circadian phenotypes. Wild-type (WT) hamsters display robust daily patterns of locomotor activity according to the light/dark conditions. Hamsters of the DAO (delayed activity onset) phenotype, however, progressively delay the activity onset, whereas activity offset remains coupled to "light-on". Although the exact reason for the delayed activity onset is not yet clarified, it is connected with a disturbed interaction between the light/dark cycle and the circadian clock. The aim was to test the link between photoreception and the behavioral output of the circadian system in hamsters of both phenotypes, to get further insight in the underlying mechanism of the DAO phenomenon. Animals were exposed to short light pulses at different times during the dark period to analyze phase shifts of the activity rhythm and expression of Fos protein in the SCN. The results indicate that the photosensitive phase in DAO hamsters is shifted like the activity onset. Also, phase shifts were significantly smaller in DAO hamsters. At the same time, levels of Fos expression did not differ between phenotypes regarding the circadian phase. The results provide evidence that the shifted photosensitivity of the circadian system in DAO hamsters does not differ from that of WT animals, and lead us to conclude that processes within the SCN that enable light information to reset the circadian pacemaker might offer an explanation for the DAO phenomenon.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Luz , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleo Supraquiasmático/metabolismo , Animais , Comportamento Animal , Cricetinae , Atividade Motora/fisiologia , Estimulação Luminosa , Fotoperíodo
9.
PLoS One ; 10(5): e0126519, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25970608

RESUMO

When food availability is restricted, animals adjust their behavior according to the timing of food access. Most rodents, such as rats and mice, and a wide number of other animals express before timed food access a bout of activity, defined as food-anticipatory activity (FAA). One notable exception amongst rodents is the Syrian hamster, a photoperiodic species that is not prone to express FAA. The present study was designed to understand the reasons for the low FAA in that species. First, we used both wheel-running activity and general cage activity to assess locomotor behavior. Second, the possible effects of photoperiod was tested by challenging hamsters with restricted feeding under long (LP) or short (SP) photoperiods. Third, because daytime light may inhibit voluntary activity, hamsters were also exposed to successive steps of full and skeleton photoperiods (two 1-h light pulses simulating dawn and dusk). When hamsters were exposed to skeleton photoperiods, not full photoperiod, they expressed FAA in the wheel independently of daylength, indicating that FAA in the wheel is masked by daytime light under full photoperiods. During FAA under skeleton photoperiods, c-Fos expression was increased in the arcuate nuclei independently of the photoperiod, but differentially increased in the ventromedial and dorsomedial hypothalamic nuclei according to the photoperiod. FAA in general activity was hardly modulated by daytime light, but was reduced under SP. Together, these findings show that food-restricted Syrian hamsters are not prone to display FAA under common laboratory conditions, because of the presence of light during daytime that suppresses FAA expression in the wheel.


Assuntos
Comportamento Alimentar , Hipotálamo/metabolismo , Animais , Cricetinae , Hidrocortisona/sangue , Mesocricetus , Fotoperíodo , Proteínas Proto-Oncogênicas c-fos/metabolismo
10.
Endocrinology ; 156(3): 1080-90, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25521581

RESUMO

Mounting evidence indicates a strong link between metabolic diseases and circadian dysfunctions. The metabolic hormone leptin, substantially increased in dietary obesity, displays chronobiotic properties. Here we investigated whether leptin is involved in the alteration of timing associated with obesity, via direct or indirect effects on the suprachiasmatic nucleus (SCN), the site of the master clock. Photic synchronization was studied in obese ob/ob mice (deficient in leptin), either injected or not with high doses of recombinant murine leptin (5 mg/kg). This was performed first at a behavioral level, by shifting the light-dark cycle and inducing phase shifts by 30-minute light pulses and then at molecular levels (c-FOS and P-ERK1/2). Moreover, to characterize the targets mediating the chronomodulatory effects of leptin, we studied the induction of phosphorylated signal transducer and activator of transcription 3 (P-STAT3) in the SCN and in different structures projecting to the SCN, including the medial hypothalamus. Ob/ob mice showed altered photic synchronization, including augmented light-induced phase delays. Acute leptin treatment normalized the photic responses of the SCN at both the behavioral and molecular levels (decrease of light-induced c-FOS). Leptin-induced P-STAT3 was modulated by light in the arcuate nucleus and both the ventromedial and dorsomedial hypothalamic nuclei, whereas its expression was independent of the presence of leptin in the SCN. These results suggest an indirect action of leptin on the SCN, possibly mediated by the medial hypothalamus. Taken together, these results highlight a central role of leptin in the relationship between metabolic disturbances and circadian disruptions.


Assuntos
Leptina/farmacologia , Luz , Núcleo Supraquiasmático/fisiologia , Animais , Ritmo Circadiano , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Genes fos/genética , Genes fos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Fosforilação , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
11.
Cell Mol Life Sci ; 69(19): 3329-39, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22627494

RESUMO

Skin acts as a barrier between the environment and internal organs and performs functions that are critical for the preservation of body homeostasis. In mammals, a complex network of circadian clocks and oscillators adapts physiology and behavior to environmental changes by generating circadian rhythms. These rhythms are induced in the central pacemaker and peripheral tissues by similar transcriptional-translational feedback loops involving clock genes. In this work, we investigated the presence of functional oscillators in the human skin by studying kinetics of clock gene expression in epidermal and dermal cells originating from the same donor and compared their characteristics. Primary cultures of fibroblasts, keratinocytes, and melanocytes were established from an abdominal biopsy and expression of clock genes following dexamethasone synchronization was assessed by qPCR. An original mathematical method was developed to analyze simultaneously up to nine clock genes. By fitting the oscillations to a common period, the phase relationships of the genes could be determined accurately. We thereby show the presence of functional circadian machinery in each cell type. These clockworks display specific periods and phase relationships between clock genes, suggesting regulatory mechanisms that are particular to each cell type. Taken together, our data demonstrate that skin has a complex circadian organization. Oscillators are present not only in fibroblasts but also in epidermal keratinocytes and melanocytes and are likely to act in coordination to drive rhythmic functions within the skin.


Assuntos
Relógios Circadianos/genética , Fibroblastos/fisiologia , Regulação da Expressão Gênica , Queratinócitos/fisiologia , Melanócitos/fisiologia , Pele/citologia , Proteínas CLOCK/genética , Células Cultivadas , Humanos
12.
J Physiol Paris ; 105(4-6): 170-82, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21914478

RESUMO

Daily rhythms in physiological and behavioral processes are controlled by a network of circadian clocks, reset by inputs and delivering circadian signals to the brain and peripheral organs. In mammals, at the top of the network is a master clock located in the suprachiasmatic nuclei (SCN) of the hypothalamus, mainly reset by ambient light. The nocturnal synthesis and release of melatonin by the pineal gland are tightly controlled by the SCN clock and inhibited by light exposure. Several roles of melatonin in the circadian system have been identified. As a major hormonal output, melatonin distributes temporal cues generated by the SCN to the multitude of tissue targets expressing melatonin receptors. In some target structures, like the Pars tuberalis of the adenohypophysis, these melatonin signals can drive daily rhythmicity that would otherwise be lacking. In other target structures, melatonin signals are used for the synchronization (i.e., adjustment of the timing of existing oscillations) of peripheral oscillators, such as the fetal adrenal gland. Due to the expression of melatonin receptors in the SCN, endogenous melatonin is also able to feedback onto the master clock, although its physiological significance needs further characterization. Of note, pharmacological treatment with exogenous melatonin can synchronize the SCN clock. From a clinical point of view, provided that the subject is not exposed to light at night, the daily profile of circulating melatonin provides a reliable estimate of the timing of the human SCN. During the past decade, a number of melatonin agonists have been developed for treating circadian, psychiatric and sleep disorders. These drugs may target the SCN for improving circadian timing or act indirectly at some downstream level of the circadian network to restore proper internal synchronization.


Assuntos
Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Melatonina/genética , Melatonina/fisiologia , Animais , Relógios Circadianos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Humanos , Melatonina/farmacologia , Rede Nervosa/fisiologia , Núcleo Supraquiasmático/fisiologia
13.
J Neurochem ; 112(6): 1489-99, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20067576

RESUMO

Under special restricted feeding conditions the mammalian circadian clock, contained in the hypothalamic suprachiasmatic nucleus (SCN), can be entrained by food. During food restriction, hungry animals are very motivated to obtain food. This motivational state could be a key component in altering the SCN timing by feeding. In order to comprehend how hedonic signals of food affect the SCN clock, we evaluated the effects of a daily palatable snack on the behavioural rhythm of mice fed ad libitum with regular food, and housed under constant darkness conditions. As light synchronization of the SCN is modulated by feeding/metabolic cues, the effects of a palatable meal coupled to a light pulse were tested on behavioural and molecular rhythms. A daily palatable snack entrained behavioural rhythms of mice in constant darkness conditions. Furthermore, palatable meal access at the activity onset reduced light-induced behavioural phase-delays and Period genes expression in the SCN. In addition, an increase in the dopamine content and Period genes expression in the forebrain of mice was observed, concomitant with a c-FOS activation in dopaminergic and orexinergic neurons, suggesting that the effects of a palatable snack on the SCN clock are mediated by the reward/arousal central systems. In conclusion, this study establishes an underlying sensitivity of the master circadian clock to changes in motivational states related to palatable food intake.


Assuntos
Ritmo Circadiano/fisiologia , Alimentos , Recompensa , Núcleo Supraquiasmático/fisiologia , Análise de Variância , Animais , Peso Corporal/fisiologia , Contagem de Células/métodos , Cromatografia Líquida de Alta Pressão/métodos , Ingestão de Alimentos/fisiologia , Eletroquímica/métodos , Comportamento Alimentar/fisiologia , Privação de Alimentos , Preferências Alimentares/fisiologia , Regulação da Expressão Gênica/fisiologia , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurotransmissores/metabolismo , Proteínas Oncogênicas v-fos/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Esquema de Reforço , Núcleo Supraquiasmático/citologia , Tirosina 3-Mono-Oxigenase/metabolismo
14.
Chronobiol Int ; 26(4): 697-708, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19444750

RESUMO

General anesthesia combined with surgery is commonly associated with post-operative stress-response in humans. Effects on the hypothalamic-pituitary-adrenal axis (HPA) during and after anesthesia are correlated with the magnitude of surgery and choice of anesthetics. The aim of our study in rats was to characterize the effects of general anesthesia without any surgery on HPA regulation of corticosterone and adrenocorticotropic hormone (ACTH) secretions. First, to assess whether the acute effects of general anesthesia on corticosterone concentration depend on time of day, rats were anesthetized with propofol at three different Zeitgeber times (ZT6, ZT10, and ZT16; with lights-on and -off at ZT0 and ZT12, respectively). Second, to determine the prolonged effects of general propofol anesthesia on daily corticosterone and ACTH concentrations, rats were anesthetized at ZT16 (4 h after lights-off) and euthanized either 1, 4, 12, 16, 20, or 24 h later. Third, the effects of propofol anesthesia on corticosterone and ACTH secretion were studied in rats instrumented with intracarotid cannulation. This permitted us to examine the individual patterns of corticosterone responses to propofol anesthesia as compared to their respective baseline corticosterone secretion. All of the results obtained showed that general propofol anesthesia, independent of the time-of-day of its administration, induces a significant increase of corticosterone secretion during the early recovery period without effect on ACTH secretion (i.e., no pituitary mediated stress-response).


Assuntos
Hormônio Adrenocorticotrópico/sangue , Corticosterona/sangue , Propofol/farmacologia , Hormônio Adrenocorticotrópico/metabolismo , Anestésicos Intravenosos/farmacologia , Animais , Corticosterona/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiologia , Masculino , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/fisiologia , Ratos , Ratos Wistar
15.
J Neurosci Res ; 87(3): 758-65, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18831006

RESUMO

The circadian rhythm of locomotor activity of hamsters kept in constant light (LL) can split into two distinct components that, in steady state, lie 180 degrees apart. The splitting phenomenon is the result of antiphase circadian oscillations between left and right sides of the suprachiasmatic nuclei (SCN), the master circadian clock in mammals. In unsplit hamsters housed in LL, a single dark pulse produces a phase-shift of the wheel-running activity rhythm, accompanied by a transient down-regulation of clock gene expression in the SCN. In the present study, we evaluated the effects of daily 1-hr dark pulses on wheel-running activity rhythm and on the expression of clock and nonclock proteins in the SCN of Syrian hamsters exposed to LL conditions. The results show that a daily 1-hr dark pulse entrained the rhythm of wheel-running activity of unsplit hamsters. In addition, in split animals, unimodal coupling of the two locomotor activity components was produced by daily 1-hr dark pulses. In the SCN, the effects of entrainment and unimodal coupling of the two separate components by dark observed in behavior were also evident in the bilateral expression of the proteins c-FOS, p-ERK, PERIOD 1, and calbindin. These results show that the bilaterally asymmetric SCN clock, underlying split circadian behavior, can be recoupled in phase and entrained by short daily dark exposure, indicating the synchronizing potency of darkness on the main circadian clock.


Assuntos
Relógios Biológicos/fisiologia , Ritmo Circadiano/fisiologia , Escuridão , Núcleo Supraquiasmático/fisiologia , Análise de Variância , Animais , Calbindinas , Contagem de Células , Cricetinae , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Mesocricetus , Atividade Motora/fisiologia , Proteínas Circadianas Period , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo
16.
J Physiol ; 586(24): 5901-10, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18936083

RESUMO

High-fat feeding in rodents leads to metabolic abnormalities mimicking the human metabolic syndrome, including obesity and insulin resistance. These metabolic diseases are associated with altered temporal organization of many physiological functions. The master circadian clock located in the suprachiasmatic nuclei controls most physiological functions and metabolic processes. Furthermore, under certain conditions of feeding (hypocaloric diet), metabolic cues are capable of altering the suprachiasmatic clock's responses to light. To determine whether high-fat feeding (hypercaloric diet) can also affect resetting properties of the suprachiasmatic clock, we investigated photic synchronization in mice fed a high-fat or chow (low-fat) diet for 3 months, using wheel-running activity and body temperature rhythms as daily phase markers (i.e. suprachiasmatic clock's hands). Compared with the control diet, mice fed with the high-fat diet exhibited increased body mass index, hyperleptinaemia, higher blood glucose, and increased insulinaemia. Concomitantly, high-fat feeding led to impaired adjustment to local time by photic resetting. At the behavioural and physiological levels, these alterations include slower rate of re-entrainment of behavioural and body temperature rhythms after 'jet-lag' test (6 h advanced light-dark cycle) and reduced phase-advancing responses to light. At a molecular level, light-induced phase shifts have been correlated, within suprachiasmatic cells, with a high induction of c-FOS, the protein product of immediate early gene c-fos, and phosphorylation of the extracellular signal-regulated kinases I/II (P-ERK). In mice fed a high-fat diet, photic induction of both c-FOS and P-ERK in the suprachiasmatic nuclei was markedly reduced. Taken together, the present data demonstrate that high-fat feeding modifies circadian synchronization to light.


Assuntos
Relógios Biológicos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Gorduras na Dieta/farmacologia , Luz , Gordura Abdominal/anatomia & histologia , Gordura Abdominal/efeitos dos fármacos , Administração Oral , Animais , Relógios Biológicos/fisiologia , Relógios Biológicos/efeitos da radiação , Glicemia/metabolismo , Temperatura Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Ritmo Circadiano/efeitos da radiação , Corticosterona/sangue , Gorduras na Dieta/administração & dosagem , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Insulina/sangue , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Estimulação Luminosa , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleo Supraquiasmático/efeitos dos fármacos , Núcleo Supraquiasmático/metabolismo , Telemetria
17.
Eur J Neurosci ; 27(8): 1965-72, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18412617

RESUMO

Anatomical evidence suggests that the ventromedial arcuate nucleus (vmARC) is a route for circulating hormonal communications to the suprachiasmatic nucleus (SCN). Whether this vmARC-SCN connection is involved in the modulation of circadian activity of the SCN is not yet known. We recently demonstrated, in rats, that intravenous (i.v.) injection of a ghrelin mimetic, GHRP-6, during the daytime activated neurons in the vmARC and reduced the normal endogenous daytime Fos expression in the SCN. In the present study we show that i.v. administration of GHRP-6 decreases light-induced Fos expression at ZT13 in the rat SCN by 50%, indicating that light-induced changes in the SCN Fos expression can also be reduced by GHRP-6. Because it is difficult to study light-induced phase changes in rats, we examined the functional effects of GHRP-6 on light-induced phase shifts in mice and demonstrated that peripherally injected GHRP-6 attenuates light-induced phase delays at ZT13 by 45%. However, light-induced Fos expression in the mice SCN was not blocked by GHRP-6. These results illustrate that acute stimulation of the ghrelinergic system may modulate SCN activity, but that its effect on light-induced phase shifts and Fos expression in the SCN might be species related.


Assuntos
Ritmo Circadiano/fisiologia , Genes fos/efeitos dos fármacos , Grelina/análogos & derivados , Oligopeptídeos/farmacologia , Núcleo Supraquiasmático/efeitos dos fármacos , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Imunofluorescência , Expressão Gênica/efeitos dos fármacos , Luz , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Wistar , Especificidade da Espécie , Núcleo Supraquiasmático/metabolismo
18.
Neuropharmacology ; 52(2): 662-71, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17084866

RESUMO

Serotonin (5-HT) and 5-HT agonists have various resetting effects on the master clock, located in the suprachiasmatic nucleus (SCN), depending on the species. In rats, they induce photic-like effects on both locomotor activity rhythms and gene expression in the SCN. The 5-HT receptor(s) mediating these effects at circadian time 22 are localized in the SCN, most likely at a presynaptic level, on the retinohypothalamic terminals (RHT) known to convey photic information by releasing glutamate. Indeed, RHT degeneration blocks photic-like effects of a non-specific 5-HT agonist, quipazine. However, the 5-HT receptor subtype(s) involved is still unknown, although 5-HT(3) receptor activation is known to induce glutamate release. We thus analyzed the effects of selective 5-HT(3) agonist and antagonist, as well as a specific NMDA receptor antagonist, on different parameters of the clock. This study shows that the 5-HT(3) receptor mediates the resetting effects of quipazine on locomotor activity rhythms. The 5-HT(3) receptor is only partially implicated in quipazine-induced expression of c-FOS, while NMDA receptor inhibition blocks quipazine photic-like effects on both parameters. Taken together, photic-like responses produced by 5-HT stimulation in rats are likely mediated by (presynaptic?) 5-HT(3) receptor activation followed by NMDA receptor activation.


Assuntos
Ritmo Circadiano/fisiologia , Luz , Receptores 5-HT3 de Serotonina/fisiologia , Análise de Variância , Animais , Proteínas CLOCK , Ritmo Circadiano/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Antagonistas de Aminoácidos Excitatórios/farmacologia , Expressão Gênica/fisiologia , Expressão Gênica/efeitos da radiação , Hibridização In Situ , Masculino , Modelos Biológicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Atividade Motora/efeitos da radiação , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Endogâmicos Lew , Serotoninérgicos/farmacologia , Núcleo Supraquiasmático/metabolismo , Transativadores/genética , Transativadores/metabolismo
19.
Brain Res Mol Brain Res ; 124(2): 143-51, 2004 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-15135222

RESUMO

The suprachiasmatic nuclei (SCN) of the hypothalamus are necessary for coordination of major aspects of circadian rhythmicity in mammals. Although the molecular clock mechanism of the SCN has been a field of intense research during the last decade, the role of the neuropeptides in the SCN, including arginine-vasopressin (AVP), vasoactive intestinal polypeptide (VIP) and gastrin-releasing peptide (GRP), in the clock itself or in circadian organization is still largely unknown. Previous studies mainly performed in the rat have examined the profiles of AVP, VIP and GRP mRNA and peptide levels and suggested that the AVP rhythm is controlled by the circadian clock, whereas those of VIP and GRP are directly dependent on lighting conditions. Here, both daily (i.e., under light-dark cycle [LD]) and circadian (i.e., in constant darkness [DD]) profiles of neuropeptide mRNA were investigated in the SCN of the nocturnal mouse Mus musculus and the diurnal rodent Arvicanthis ansorgei to gain insight into a possible role in circadian organization. Our data show that AVP mRNA exhibits a clear circadian rhythm in the SCN peaking by the end of the subjective day in both species. Contrary to what has been observed in rats, oscillations of VIP and GRP mRNA in the SCN are found to be clock-controlled in mice and A. ansorgei, but with different phases for peak expression. While both VIP and GRP mRNA peak during the middle of the subjective night (i.e., with a 6-h lag compared to AVP mRNA) in mice, they peak almost in phase with AVP mRNA in A. ansorgei. Contrary to what has been reported in the rat, mean levels of VIP and GRP peptide mRNA levels tended to be increased by light in the mice. The different circadian organization of SCN neuropeptides mRNA profiles in both light/dark and constant darkness conditions between mice and A. ansorgei could be related with diurnality.


Assuntos
Adaptação Fisiológica/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica/genética , Camundongos/metabolismo , Neuropeptídeos/genética , Núcleo Supraquiasmático/metabolismo , Adaptação Fisiológica/efeitos da radiação , Animais , Arginina Vasopressina/genética , Relógios Biológicos/genética , Relógios Biológicos/efeitos da radiação , Ritmo Circadiano/efeitos da radiação , Peptídeo Liberador de Gastrina/genética , Regulação da Expressão Gênica/efeitos da radiação , Luz , Camundongos/anatomia & histologia , Dados de Sequência Molecular , Atividade Motora/genética , Atividade Motora/fisiologia , Estimulação Luminosa , RNA Mensageiro/metabolismo , Núcleo Supraquiasmático/efeitos da radiação , Regulação para Cima/genética , Peptídeo Intestinal Vasoativo/metabolismo
20.
Eur J Neurosci ; 19(7): 1773-88, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15078551

RESUMO

The suprachiasmatic nuclei of the hypothalamus (SCN) are the site of the master circadian clock in mammals. The SCN clock is mainly entrained by the light-dark cycle. Light information is conveyed from the retina to the SCN through direct, retinohypothalamic fibres. The SCN also receive other projections, like cholinergic fibres from basal forebrain. To test whether cholinergic afferents are involved in photic resetting, lesions of cholinergic projections were performed in rats with intracerebroventricular (i.c.v.) injections or intra-SCN microinjections of 192 IgG-saporin. When injected in the SCN, this immunotoxin destroys the cholinergic projections and retinohypothalamic afferents that express p75 low-affinity nerve growth factor (p75(NGF)) receptors. The extent of lesions in the basal forebrain and SCN was assessed by acetylcholinesterase histochemistry, p75(NGF) receptor, choline acetyl-transferase, calbindin-D28K and VIP immunocytochemistry. The intra-SCN treatment reduced light-induced phase advances by 30%, and induced a complete loss of forebrain and retinal afferents expressing p75(NGF) receptors within the SCN and a decrease of forebrain cholinergic neurons, most likely those projecting to the SCN. The i.c.v. treatment reduced light-induced phase advances by 40%, increased phase delays and led to extensive damage of forebrain p75(NGF)-expressing neurons, while sparing half of the fibres expressing p75(NGF) receptors (retinal afferents?) in the SCN. Because the integrity of forebrain p75(NGF)-expressing neurons appears to be critical in mediating the effects on light-induced phase advances, we therefore suggest that anterior cholinergic projections expressing p75(NGF) receptors modulate the sensitivity of the SCN clock to the phase advancing effects of light.


Assuntos
Fibras Colinérgicas/metabolismo , Ritmo Circadiano/fisiologia , Luz , Receptores de Fator de Crescimento Neural/metabolismo , Núcleo Supraquiasmático/metabolismo , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Animais , Anticorpos Monoclonais/toxicidade , Temperatura Corporal/efeitos dos fármacos , Encefalopatias/metabolismo , Encefalopatias/fisiopatologia , Calbindina 1 , Calbindinas , Contagem de Células/métodos , Fibras Colinérgicas/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Denervação , Vias de Administração de Medicamentos , Imuno-Histoquímica/métodos , Imunotoxinas/toxicidade , Masculino , Feixe Prosencefálico Mediano , Atividade Motora/efeitos dos fármacos , N-Glicosil Hidrolases , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Long-Evans , Receptor de Fator de Crescimento Neural , Receptores de Fator de Crescimento Neural/efeitos da radiação , Proteínas Inativadoras de Ribossomos Tipo 1 , Proteína G de Ligação ao Cálcio S100/metabolismo , Saporinas , Coloração e Rotulagem/métodos , Núcleo Supraquiasmático/patologia , Fatores de Tempo , Peptídeo Intestinal Vasoativo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA