Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 10(9): 3378-3391, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39189814

RESUMO

Thiopeptides are ribosomally biosynthesized and post-translationally modified peptides (RiPPs) that potently inhibit the growth of Gram-positive bacteria by targeting multiple steps in protein biosynthesis. The poor pharmacological properties of thiopeptides, particularly their low aqueous solubility, has hindered their development into clinically useful antibiotics. Antimicrobial activity screens of a library of Actinomycetota extracts led to discovery of the novel polyglycosylated thiopeptides persiathiacins A and B from Actinokineospora sp. UTMC 2448. Persiathiacin A is active against methicillin-resistant Staphylococcus aureus and several Mycobacterium tuberculosis strains, including drug-resistant and multidrug-resistant clinical isolates, and does not significantly affect the growth of ovarian cancer cells at concentrations up to 400 µM. Polyglycosylated thiopeptides are extremely rare and nothing is known about their biosynthesis. Sequencing and analysis of the Actinokineospora sp. UTMC 2448 genome enabled identification of the putative persiathiacin biosynthetic gene cluster (BGC). A cytochrome P450 encoded by this gene cluster catalyzes the hydroxylation of nosiheptide in vitro and in vivo, consistent with the proposal that the cluster directs persiathiacin biosynthesis. Several genes in the cluster encode homologues of enzymes known to catalyze the assembly and attachment of deoxysugars during the biosynthesis of other classes of glycosylated natural products. One of these encodes a glycosyl transferase that was shown to catalyze attachment of a D-glucose residue to nosiheptide in vitro. The discovery of the persiathiacins and their BGC thus provides the basis for the development of biosynthetic engineering approaches to the creation of novel (poly)glycosylated thiopeptide derivatives with enhanced pharmacological properties.


Assuntos
Família Multigênica , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Humanos , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Testes de Sensibilidade Microbiana , Antituberculosos/farmacologia , Antituberculosos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Glicosilação , Actinobacteria/metabolismo , Actinobacteria/genética , Vias Biossintéticas , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/metabolismo
2.
Nat Chem Biol ; 20(2): 251-260, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37996631

RESUMO

The modular nature of nonribosomal peptide biosynthesis has driven efforts to generate peptide analogs by substituting amino acid-specifying domains within nonribosomal peptide synthetase (NRPS) enzymes. Rational NRPS engineering has increasingly focused on finding evolutionarily favored recombination sites for domain substitution. Here we present an alternative evolution-inspired approach that involves large-scale diversification and screening. By amplifying amino acid-specifying domains en masse from soil metagenomic DNA, we substitute more than 1,000 unique domains into a pyoverdine NRPS. Initial fluorescence and mass spectrometry screens followed by sequencing reveal more than 100 functional domain substitutions, collectively yielding 16 distinct pyoverdines as major products. This metagenomic approach does not require the high success rates demanded by rational NRPS engineering but instead enables the exploration of large numbers of substitutions in parallel. This opens possibilities for the discovery and production of nonribosomal peptides with diverse biological activities.


Assuntos
Peptídeo Sintases , Peptídeos , Peptídeos/química , Peptídeo Sintases/genética , Aminoácidos
3.
Nat Commun ; 12(1): 2511, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947858

RESUMO

Non-ribosomal peptide synthetases are important enzymes for the assembly of complex peptide natural products. Within these multi-modular assembly lines, condensation domains perform the central function of chain assembly, typically by forming a peptide bond between two peptidyl carrier protein (PCP)-bound substrates. In this work, we report structural snapshots of a condensation domain in complex with an aminoacyl-PCP acceptor substrate. These structures allow the identification of a mechanism that controls access of acceptor substrates to the active site in condensation domains. The structures of this complex also allow us to demonstrate that condensation domain active sites do not contain a distinct pocket to select the side chain of the acceptor substrate during peptide assembly but that residues within the active site motif can instead serve to tune the selectivity of these central biosynthetic domains.


Assuntos
Aminoácidos/química , Domínio Catalítico , Peptídeo Sintases/química , Peptídeos/química , Sideróforos/química , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Coenzima A/química , Cristalografia por Raios X , Expressão Gênica , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Domínios Proteicos , Estrutura Terciária de Proteína , Alinhamento de Sequência , Sideróforos/biossíntese , Especificidade por Substrato , Thermobifida/química , Thermobifida/metabolismo
4.
Nature ; 590(7846): 463-467, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536618

RESUMO

Actinobacteria produce numerous antibiotics and other specialized metabolites that have important applications in medicine and agriculture1. Diffusible hormones frequently control the production of such metabolites by binding TetR family transcriptional repressors (TFTRs), but the molecular basis for this remains unclear2. The production of methylenomycin antibiotics in Streptomyces coelicolor A3(2) is initiated by the binding of 2-alkyl-4-hydroxymethylfuran-3-carboxylic acid (AHFCA) hormones to the TFTR MmfR3. Here we report the X-ray crystal structure of an MmfR-AHFCA complex, establishing the structural basis for hormone recognition. We also elucidate the mechanism for DNA release upon hormone binding through the single-particle cryo-electron microscopy structure of an MmfR-operator complex. DNA binding and release assays with MmfR mutants and synthetic AHFCA analogues define the role of individual amino acid residues and hormone functional groups in ligand recognition and DNA release. These findings will facilitate the exploitation of actinobacterial hormones and their associated TFTRs in synthetic biology and in the discovery of new antibiotics.


Assuntos
Antibacterianos/biossíntese , Furanos/metabolismo , Streptomyces coelicolor/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica , Cristalografia por Raios X , DNA/química , DNA/genética , DNA/metabolismo , DNA/ultraestrutura , Furanos/química , Hormônios/química , Hormônios/classificação , Hormônios/metabolismo , Ligantes , Modelos Moleculares , Peptídeos/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/classificação , Proteínas Repressoras/metabolismo , Proteínas Repressoras/ultraestrutura , Transdução de Sinais , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Relação Estrutura-Atividade
5.
Microb Genom ; 7(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33459584

RESUMO

Burkholderia gladioli is a bacterium with a broad ecology spanning disease in humans, animals and plants, but also encompassing multiple beneficial interactions. It is a plant pathogen, a toxin-producing food-poisoning agent, and causes lung infections in people with cystic fibrosis (CF). Contrasting beneficial traits include antifungal production exploited by insects to protect their eggs, plant protective abilities and antibiotic biosynthesis. We explored the genomic diversity and specialized metabolic potential of 206 B. gladioli strains, phylogenomically defining 5 clades. Historical disease pathovars (pv.) B. gladioli pv. allicola and B. gladioli pv. cocovenenans were distinct, while B. gladioli pv. gladioli and B. gladioli pv. agaricicola were indistinguishable; soft-rot disease and CF infection were conserved across all pathovars. Biosynthetic gene clusters (BGCs) for toxoflavin, caryoynencin and enacyloxin were dispersed across B. gladioli, but bongkrekic acid and gladiolin production were clade-specific. Strikingly, 13 % of CF infection strains characterized were bongkrekic acid-positive, uniquely linking this food-poisoning toxin to this aspect of B. gladioli disease. Mapping the population biology and metabolite production of B. gladioli has shed light on its diverse ecology, and by demonstrating that the antibiotic trimethoprim suppresses bongkrekic acid production, a potential therapeutic strategy to minimize poisoning risk in CF has been identified.


Assuntos
Burkholderia gladioli/classificação , Fibrose Cística/microbiologia , Doenças das Plantas/microbiologia , Sequenciamento Completo do Genoma/métodos , Vias Biossintéticas , Ácido Bongcréquico/metabolismo , Burkholderia gladioli/genética , Burkholderia gladioli/patogenicidade , Burkholderia gladioli/fisiologia , Microbiologia de Alimentos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , Trimetoprima/farmacologia
6.
Chem Commun (Camb) ; 56(92): 14443-14446, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33146163

RESUMO

Using a combination of a synthetic substrate analogue and product standard, MmfL, a homologue of the γ-butyrolactone biosynthetic enzyme AfsA, was shown to catalyse the condensation of dihydroxyacetone phosphate with a ß-ketoacyl thioester to form a phosphorylated butenolide intermediate in the biosynthesis of the methylenomycin furans, which induce methlenomycin antibiotic production in Streptomyces coelicolor A3(2). AfsA homologues are also involved in the biosynthesis of 2-akyl-4-hydroxy-3-methyl butenolide inducers of antibiotic production in other Streptomyces species, indicating that diverse signalling molecules are assembled from analogous phosphorylated butenolide intermediates.


Assuntos
4-Butirolactona/análogos & derivados , Antibacterianos/química , Proteínas de Bactérias/química , Furanos/química , 4-Butirolactona/química , Vias Biossintéticas , Catálise , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Peptídeos/química , Peptídeos/metabolismo , Fosforilação , Streptomyces , Relação Estrutura-Atividade
7.
Angew Chem Int Ed Engl ; 59(51): 23145-23153, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-32918852

RESUMO

A gene cluster encoding a cryptic trans-acyl transferase polyketide synthase (PKS) was identified in the genomes of Burkholderia gladioli BCC0238 and BCC1622, both isolated from the lungs of cystic fibrosis patients. Bioinfomatics analyses indicated the PKS assembles a novel member of the glutarimide class of antibiotics, hitherto only isolated from Streptomyces species. Screening of a range of growth parameters led to the identification of gladiostatin, the metabolic product of the PKS. NMR spectroscopic analysis revealed that gladiostatin, which has promising activity against several human cancer cell lines and inhibits tumor cell migration, contains an unusual 2-acyl-4-hydroxy-3-methylbutenolide in addition to the glutarimide pharmacophore. An AfsA-like domain at the C-terminus of the PKS was shown to catalyze condensation of 3-ketothioesters with dihydroxyacetone phosphate, thus indicating it plays a key role in polyketide chain release and butenolide formation.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Burkholderia gladioli/química , Piperidonas/farmacologia , Policetídeo Sintases/química , Antibacterianos/química , Antibacterianos/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Burkholderia gladioli/genética , Burkholderia gladioli/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Família Multigênica , Piperidonas/química , Piperidonas/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo
8.
Angew Chem Int Ed Engl ; 59(48): 21553-21561, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32780452

RESUMO

Two Burkholderia gladioli strains isolated from the lungs of cystic fibrosis patients were found to produce unusual lipodepsipeptides containing a unique citrate-derived fatty acid and a rare dehydro-ß-alanine residue. The gene cluster responsible for their biosynthesis was identified by bioinformatics and insertional mutagenesis. In-frame deletions and enzyme activity assays were used to investigate the functions of several proteins encoded by the biosynthetic gene cluster, which was found in the genomes of about 45 % of B. gladioli isolates, suggesting that its metabolic products play an important role in the growth and/or survival of the species. The Chrome Azurol S assay indicated that these metabolites bind ferric iron, which suppresses their production when added to the growth medium. Moreover, a gene encoding a TonB-dependent ferric-siderophore receptor is adjacent to the biosynthetic genes, suggesting that these metabolites may function as siderophores in B. gladioli.


Assuntos
Burkholderia gladioli/química , Depsipeptídeos/biossíntese , Burkholderia gladioli/metabolismo , Depsipeptídeos/química , Depsipeptídeos/isolamento & purificação , Estrutura Molecular
9.
Microb Cell Fact ; 19(1): 111, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448325

RESUMO

BACKGROUND: Mithramycin is an anti-tumor compound of the aureolic acid family produced by Streptomyces argillaceus. Its biosynthesis gene cluster has been cloned and characterized, and several new analogs with improved pharmacological properties have been generated through combinatorial biosynthesis. To further study these compounds as potential new anticancer drugs requires their production yields to be improved significantly. The biosynthesis of mithramycin proceeds through the formation of the key intermediate 4-demethyl-premithramycinone. Extensive studies have characterized the biosynthesis pathway from this intermediate to mithramycin. However, the biosynthesis pathway for 4-demethyl-premithramycinone remains unclear. RESULTS: Expression of cosmid cosAR7, containing a set of mithramycin biosynthesis genes, in Streptomyces albus resulted in the production of 4-demethyl-premithramycinone, delimiting genes required for its biosynthesis. Inactivation of mtmL, encoding an ATP-dependent acyl-CoA ligase, led to the accumulation of the tricyclic intermediate 2-hydroxy-nogalonic acid, proving its essential role in the formation of the fourth ring of 4-demethyl-premithramycinone. Expression of different sets of mithramycin biosynthesis genes as cassettes in S. albus and analysis of the resulting metabolites, allowed the reconstitution of the biosynthesis pathway for 4-demethyl-premithramycinone, assigning gene functions and establishing the order of biosynthetic steps. CONCLUSIONS: We established the biosynthesis pathway for 4-demethyl-premithramycinone, and identified the minimal set of genes required for its assembly. We propose that the biosynthesis starts with the formation of a linear decaketide by the minimal polyketide synthase MtmPKS. Then, the cyclase/aromatase MtmQ catalyzes the cyclization of the first ring (C7-C12), followed by formation of the second and third rings (C5-C14; C3-C16) catalyzed by the cyclase MtmY. Formation of the fourth ring (C1-C18) requires MtmL and MtmX. Finally, further oxygenation and reduction is catalyzed by MtmOII and MtmTI/MtmTII respectively, to generate the final stable tetracyclic intermediate 4-demethyl-premithramycinone. Understanding the biosynthesis of this compound affords enhanced possibilities to generate new mithramycin analogs and improve their production titers for bioactivity investigation.


Assuntos
Antibióticos Antineoplásicos/biossíntese , Plicamicina/biossíntese , Policetídeos/metabolismo , Streptomyces , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
10.
Nat Prod Rep ; 35(7): 622-632, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29651484

RESUMO

Covering: up to the end of 2017 The roles played by Rieske non-heme iron-dependent oxygenases in natural product biosynthesis are reviewed, with particular focus on experimentally characterised examples. Enzymes belonging to this class are known to catalyse a range of transformations, including oxidative carbocyclisation, N-oxygenation, C-hydroxylation and C-C desaturation. Examples of such enzymes that have yet to be experimentally investigated are also briefly described and their likely functions are discussed.


Assuntos
Produtos Biológicos/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/química , Oxigenases/química , Oxigenases/metabolismo , Ciclização , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Heme , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/metabolismo , Hidroxilação , Prodigiosina/análogos & derivados , Prodigiosina/biossíntese , Prodigiosina/química , Pirróis/química , Pirróis/metabolismo , Pirrolnitrina/biossíntese , Compostos de Espiro/metabolismo
11.
J Am Chem Soc ; 139(23): 7974-7981, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28528545

RESUMO

An antimicrobial activity screen of Burkholderia gladioli BCC0238, a clinical isolate from a cystic fibrosis patient, led to the discovery of gladiolin, a novel macrolide antibiotic with potent activity against Mycobacterium tuberculosis H37Rv. Gladiolin is structurally related to etnangien, a highly unstable antibiotic from Sorangium cellulosum that is also active against Mycobacteria. Like etnangien, gladiolin was found to inhibit RNA polymerase, a validated drug target in M. tuberculosis. However, gladiolin lacks the highly labile hexaene moiety of etnangien and was thus found to possess significantly increased chemical stability. Moreover, gladiolin displayed low mammalian cytotoxicity and good activity against several M. tuberculosis clinical isolates, including four that are resistant to isoniazid and one that is resistant to both isoniazid and rifampicin. Overall, these data suggest that gladiolin may represent a useful starting point for the development of novel drugs to tackle multidrug-resistant tuberculosis. The B. gladioli BCC0238 genome was sequenced using Single Molecule Real Time (SMRT) technology. This resulted in four contiguous sequences: two large circular chromosomes and two smaller putative plasmids. Analysis of the chromosome sequences identified 49 putative specialized metabolite biosynthetic gene clusters. One such gene cluster, located on the smaller of the two chromosomes, encodes a trans-acyltransferase (trans-AT) polyketide synthase (PKS) multienzyme that was hypothesized to assemble gladiolin. Insertional inactivation of a gene in this cluster encoding one of the PKS subunits abrogated gladiolin production, confirming that the gene cluster is responsible for biosynthesis of the antibiotic. Comparison of the PKSs responsible for the assembly of gladiolin and etnangien showed that they possess a remarkably similar architecture, obfuscating the biosynthetic mechanisms responsible for most of the structural differences between the two metabolites.


Assuntos
Antibacterianos/farmacologia , Burkholderia gladioli/química , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Antibacterianos/biossíntese , Antibacterianos/química , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Testes de Sensibilidade Microbiana , Conformação Molecular , Mycobacterium tuberculosis/metabolismo , Relação Estrutura-Atividade
12.
Curr Opin Chem Biol ; 35: 73-79, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27632683

RESUMO

Class B radical S-adenosylmethionine (SAM) methylases are notable for their ability to catalyse methylation reactions in the biosynthesis of a wide variety of natural products, including polyketides, ribosomally biosynthesised and post-translationally modified peptides (RiPPs), nonribosomal peptides (NRPs), aminoglycosides, ß-lactams, phosphonates, enediynes, aminocoumarins and terpenes. Here, we discuss the diversity of substrates and catalytic mechanism utilised by such enzymes, highlighting the stereochemical course of methylation reactions at un-activated carbon centres and the ability of some members of the family to catalyse multiple methylations.


Assuntos
Produtos Biológicos/metabolismo , Metiltransferases/metabolismo , S-Adenosilmetionina/metabolismo , Metilação
13.
Chem Sci ; 7(1): 482-488, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28791101

RESUMO

Streptomycetes are a rich source of bioactive specialized metabolites, including several examples of the rapidly growing class of ribosomally-biosynthesized and post-translationally-modified peptide (RiPP) natural products. Here we report the discovery from Streptomyces sp. FXJ1.264 of azolemycins A-D, a complex of novel linear azole-containing peptides incorporating a unique oxime functional group. Bioinformatics analysis of the Streptomyces sp. FXJ1.264 draft genome sequence identified a cluster of genes that was hypothesized to be responsible for elaboration of the azolemycins from a ribosomally-biosynthesized precursor. Inactivation of genes within this cluster abolished azolemycin production, consistent with this hypothesis. Moreover, mutants lacking the azmE and azmF genes accumulated azolemycin derivatives lacking the O-methyl groups and an amino group in place of the N-terminal oxime (as well as proteolysed derivatives), respectively. Thus AzmE, a putative S-adenosyl methionine-dependent methyl transferase, is responsible for late-stage O-methylation reactions in azolemycin biosynthesis and AzmF, a putative flavin-dependent monooxygenase, catalyzes oxidation of the N-terminal amino group in an azolemycin precursor to the corresponding oxime. To the best of our knowledge, oxime formation is a hitherto unknown posttranslational modification in RiPP biosynthesis.

14.
Nat Rev Microbiol ; 13(8): 509-23, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26119570

RESUMO

Microorganisms produce a wealth of structurally diverse specialized metabolites with a remarkable range of biological activities and a wide variety of applications in medicine and agriculture, such as the treatment of infectious diseases and cancer, and the prevention of crop damage. Genomics has revealed that many microorganisms have far greater potential to produce specialized metabolites than was thought from classic bioactivity screens; however, realizing this potential has been hampered by the fact that many specialized metabolite biosynthetic gene clusters (BGCs) are not expressed in laboratory cultures. In this Review, we discuss the strategies that have been developed in bacteria and fungi to identify and induce the expression of such silent BGCs, and we briefly summarize methods for the isolation and structural characterization of their metabolic products.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Produtos Biológicos/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Família Multigênica , Elementos Silenciadores Transcricionais/genética , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Produtos Biológicos/química
15.
J Antibiot (Tokyo) ; 67(1): 71-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24220109

RESUMO

Many polyketide antibiotics contain macrolactones that arise from polyketide synthase chain release via thioesterase (TE) domain-catalyzed macrolactonization. The hydroxyl groups utilized in such macrolactonization reactions typically derive from reduction of ß-ketothioester intermediates in polyketide chain assembly. The stambomycins are a group of novel macrolide antibiotics with promising anticancer activity that we recently discovered via rational activation of a silent polyketide biosynthetic gene cluster in Streptomyces ambofaciens. Here we report that the hydroxyl group utilized for formation of the macrolactone in the stambomycins is derived from cytochrome P450-catalyzed hydroxylation of the polyketide chain rather than keto reduction during chain assembly. This is a novel mechanism for macrolactone formation in polyketide antibiotic biosynthesis.


Assuntos
Antibióticos Antineoplásicos/química , Sistema Enzimático do Citocromo P-450/metabolismo , Macrolídeos/química , Policetídeos/química , Antibióticos Antineoplásicos/biossíntese , Hidroxilação
16.
ACS Catal ; 3(10)2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24244885

RESUMO

Rieske non-heme iron-dependent oxygenases are important enzymes that catalyze a wide variety of reactions in the biodegradation of xenobiotics and the biosynthesis of bioactive natural products. In this perspective article, we summarize recent efforts to elucidate the catalytic mechanisms of Rieske oxygenases and highlight the diverse range of reactions now known to be catalyzed by such enzymes.

17.
Nat Prod Rep ; 30(1): 108-60, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23165928

RESUMO

This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.


Assuntos
Produtos Biológicos , Peptídeos , Ribossomos/metabolismo , Sequência de Aminoácidos , Produtos Biológicos/síntese química , Produtos Biológicos/química , Produtos Biológicos/classificação , Produtos Biológicos/farmacologia , Humanos , Dados de Sequência Molecular , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Peptídeos/classificação , Peptídeos/farmacologia , Processamento de Proteína Pós-Traducional , Ribossomos/genética
18.
Methods Enzymol ; 516: 195-218, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23034230

RESUMO

Tailoring enzymes catalyze reactions that modify natural product backbone structures before, during, or after their biosynthesis to create a final product with specific biological activities. Such reactions can be catalyzed by a myriad of different enzyme families and are responsible for a wide variety of transformations including regio- and/or stereospecific acylation, alkylation, glycosylation, halogenation, and oxidation. Within a broad group of oxidative tailoring enzymes, there is a rapidly growing family of nonheme iron- and oxygen-dependent enzymes that catalyze a variety of remarkable hydroxylation, desaturation, halogenation, and oxidative cyclization reaction in the biosynthesis of several important metabolites, including carbapenems, penicillins, cephalosporins, clavams, prodiginines, fosfomycin, syringomycin, and coronatine. In this chapter, we report an expedient method for analyzing tailoring enzymes that catalyze oxidative cyclization reactions in prodiginine biosynthesis via expression of the corresponding genes in a heterologous host, feeding of putative biosynthetic intermediates to the resulting strains, and liquid chromatography-mass spectrometry analyses of the metabolites produced.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/metabolismo , Ferroproteínas não Heme/metabolismo , Prodigiosina/análogos & derivados , Streptomyces/enzimologia , Acilação , Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Ciclização , Expressão Gênica , Glicosilação , Halogenação , Hidroxilação , Ferro/química , Ferro/metabolismo , Ferroproteínas não Heme/química , Ferroproteínas não Heme/genética , Oxirredução , Plasmídeos , Prodigiosina/biossíntese , Prodigiosina/química , Streptomyces/química , Streptomyces/genética
19.
J Biol Chem ; 287(19): 16058-72, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22408253

RESUMO

Petrobactin, a mixed catechol-carboxylate siderophore, is required for full virulence of Bacillus anthracis, the causative agent of anthrax. The asbABCDEF operon encodes the biosynthetic machinery for this secondary metabolite. Here, we show that the function of five gene products encoded by the asb operon is necessary and sufficient for conversion of endogenous precursors to petrobactin using an in vitro system. In this pathway, the siderophore synthetase AsbB catalyzes formation of amide bonds crucial for petrobactin assembly through use of biosynthetic intermediates, as opposed to primary metabolites, as carboxylate donors. In solving the crystal structure of the B. anthracis siderophore biosynthesis protein B (AsbB), we disclose a three-dimensional model of a nonribosomal peptide synthetase-independent siderophore (NIS) synthetase. Structural characteristics provide new insight into how this bifunctional condensing enzyme can bind and adenylate multiple citrate-containing substrates followed by incorporation of both natural and unnatural polyamine nucleophiles. This activity enables formation of multiple end-stage products leading to final assembly of petrobactin. Subsequent enzymatic assays with the nonribosomal peptide synthetase-like AsbC, AsbD, and AsbE polypeptides show that the alternative products of AsbB are further converted to petrobactin, verifying previously proposed convergent routes to formation of this siderophore. These studies identify potential therapeutic targets to halt deadly infections caused by B. anthracis and other pathogenic bacteria and suggest new avenues for the chemoenzymatic synthesis of novel compounds.


Assuntos
Bacillus anthracis/metabolismo , Proteínas de Bactérias/metabolismo , Benzamidas/metabolismo , Vias Biossintéticas , Carbono-Nitrogênio Ligases/metabolismo , Ligases/metabolismo , Sequência de Aminoácidos , Bacillus anthracis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Benzamidas/química , Biocatálise , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/genética , Cristalografia por Raios X , Ligases/química , Ligases/genética , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Poliaminas/química , Poliaminas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Sideróforos/química , Sideróforos/metabolismo , Especificidade por Substrato
20.
Chem Biol ; 18(5): 665-77, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21609847

RESUMO

Gram-negative Burkholderia cepacia complex (Bcc) isolates were screened for antimicrobial activity against cystic fibrosis microbial pathogens, and the ability of B. ambifaria to inhibit B. multivorans was identified. The activity was mapped to a cluster of cryptic, quorum-sensing-regulated modular polyketide synthase (PKS) genes. Enacyloxin IIa and its stereoisomer designated iso-enacyloxin IIa were identified as metabolic products of the gene cluster, which encoded an unusual hybrid modular PKS consisting of multiple proteins with sequence similarity to cis-acyltransferase (cis-AT) PKSs and a single protein with sequence similarity to trans-AT PKSs. The discovery of the potent activity of enacyloxins against drug-resistant bacteria and the gene cluster that directs their production provides an opportunity for engineered biosynthesis of innovative enacyloxin derivatives and highlights the potential of Bcc bacteria as an underexploited resource for antibiotic discovery.


Assuntos
Anti-Infecciosos/metabolismo , Burkholderia/genética , Policetídeo Sintases/metabolismo , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Burkholderia/enzimologia , Ilhas Genômicas , Isomerismo , Testes de Sensibilidade Microbiana , Família Multigênica , Polienos/química , Polienos/metabolismo , Polienos/farmacologia , Policetídeo Sintases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA