Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pediatr Genet ; 12(2): 135-140, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37090834

RESUMO

Neurofibromatosis type 1 (NF1) is one of the most common inherited disorders. It is caused by mutations in the neurofibromin-1 gene ( NF1 ) and affects the formation and growth of nerve tissues. More than 3,600 pathogenic variants in the NF1 gene have been identified from patients with most of the germline variants are from the Western populations. We found 16 patients (15 Chinese and 1 Asian Indian) who had heterozygous variants in NF1 through targeted next-generation sequencing. There were 15 different variants: 4 frameshift, 4 nonsense, 5 missense, and 2 splice variants. One nonsense variant and three frameshift variants had never been reported in any population or patient database. Twelve of the 16 patients met the NF1 diagnostic criteria, and each was found to have a pathogenic or likely pathogenic variant. Three different missense variants of unknown significance were discovered in the other four patients who did not meet NF1 diagnostic criteria. Our findings add four novel variants to the list of genetic mutations linked to NF1's various clinical manifestations.

3.
Arch Dis Child ; 106(1): 31-37, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32819910

RESUMO

OBJECTIVE: Use next-generation sequencing (NGS) technology to improve our diagnostic yield in patients with suspected genetic disorders in the Asian setting. DESIGN: A diagnostic study conducted between 2014 and 2019 (and ongoing) under the Singapore Undiagnosed Disease Program. Date of last analysis was 1 July 2019. SETTING: Inpatient and outpatient genetics service at two large academic centres in Singapore. PATIENTS: Inclusion criteria: patients suspected of genetic disorders, based on abnormal antenatal ultrasound, multiple congenital anomalies and developmental delay. EXCLUSION CRITERIA: patients with known genetic disorders, either after clinical assessment or investigations (such as karyotype or chromosomal microarray). INTERVENTIONS: Use of NGS technology-whole exome sequencing (WES) or whole genome sequencing (WGS). MAIN OUTCOME MEASURES: (1) Diagnostic yield by sequencing type, (2) diagnostic yield by phenotypical categories, (3) reduction in time to diagnosis and (4) change in clinical outcomes and management. RESULTS: We demonstrate a 37.8% diagnostic yield for WES (n=172) and a 33.3% yield for WGS (n=24). The yield was higher when sequencing was conducted on trios (40.2%), as well as for certain phenotypes (neuromuscular, 54%, and skeletal dysplasia, 50%). In addition to aiding genetic counselling in 100% of the families, a positive result led to a change in treatment in 27% of patients. CONCLUSION: Genomic sequencing is an effective method for diagnosing rare disease or previous 'undiagnosed' disease. The clinical utility of WES/WGS is seen in the shortened time to diagnosis and the discovery of novel variants. Additionally, reaching a diagnosis significantly impacts families and leads to alteration in management of these patients.


Assuntos
Anormalidades Múltiplas/genética , Deficiências do Desenvolvimento/genética , Sequenciamento de Nucleotídeos em Larga Escala , Doenças não Diagnosticadas/genética , Anormalidades Múltiplas/diagnóstico , Adolescente , Adulto , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico , Feminino , Humanos , Lactente , Masculino , Singapura , Doenças não Diagnosticadas/diagnóstico , Adulto Jovem
4.
Am J Hum Genet ; 99(2): 451-9, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27476655

RESUMO

Cellular homeostasis is maintained by the highly organized cooperation of intracellular trafficking systems, including COPI, COPII, and clathrin complexes. COPI is a coatomer protein complex responsible for intracellular protein transport between the endoplasmic reticulum and the Golgi apparatus. The importance of such intracellular transport mechanisms is underscored by the various disorders, including skeletal disorders such as cranio-lenticulo-sutural dysplasia and osteogenesis imperfect, caused by mutations in the COPII coatomer complex. In this article, we report a clinically recognizable craniofacial disorder characterized by facial dysmorphisms, severe micrognathia, rhizomelic shortening, microcephalic dwarfism, and mild developmental delay due to loss-of-function heterozygous mutations in ARCN1, which encodes the coatomer subunit delta of COPI. ARCN1 mutant cell lines were revealed to have endoplasmic reticulum stress, suggesting the involvement of ER stress response in the pathogenesis of this disorder. Given that ARCN1 deficiency causes defective type I collagen transport, reduction of collagen secretion represents the likely mechanism underlying the skeletal phenotype that characterizes this condition. Our findings demonstrate the importance of COPI-mediated transport in human development, including skeletogenesis and brain growth.


Assuntos
Complexo I de Proteína do Envoltório/metabolismo , Proteína Coatomer/genética , Anormalidades Craniofaciais/genética , Mutação , Adulto , Proteína Coatomer/metabolismo , Colágeno/metabolismo , Estresse do Retículo Endoplasmático , Heterozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA