Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 30(6): 3667-3685, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32080739

RESUMO

Disinhibition is a widespread circuit mechanism for information selection and transfer. In the hippocampus, disinhibition of principal cells is provided by the interneuron-specific interneurons that express the vasoactive intestinal polypeptide (VIP-IS) and innervate selectively inhibitory interneurons. By combining optophysiological experiments with computational models, we determined the impact of synaptic inputs onto the network state-dependent recruitment of VIP-IS cells. We found that VIP-IS cells fire spikes in response to both the Schaffer collateral and the temporoammonic pathway activation. Moreover, by integrating their intrinsic and synaptic properties into computational models, we predicted recruitment of these cells between the rising phase and peak of theta oscillation and during ripples. Two-photon Ca2+-imaging in awake mice supported in part the theoretical predictions, revealing a significant speed modulation of VIP-IS cells and their preferential albeit delayed recruitment during theta-run epochs, with estimated firing at the rising phase and peak of the theta cycle. However, it also uncovered that VIP-IS cells are not activated during ripples. Thus, given the preferential theta-modulated firing of VIP-IS cells in awake hippocampus, we postulate that these cells may be important for information gating during spatial navigation and memory encoding.


Assuntos
Potenciais de Ação/fisiologia , Região CA1 Hipocampal/metabolismo , Interneurônios/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Simulação por Computador , Interneurônios/fisiologia , Memória , Camundongos , Camundongos Transgênicos , Inibição Neural/fisiologia , Imagem Óptica , Técnicas de Patch-Clamp , Recrutamento Neurofisiológico/fisiologia , Memória Espacial/fisiologia , Navegação Espacial/fisiologia , Ritmo Teta , Vigília
2.
Exp Physiol ; 104(4): 463-468, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30729595

RESUMO

NEW FINDINGS: What is the central question of the study? Progesterone is considered a respiratory stimulant drug, but its effect on medullary respiratory neurons are poorly documented. We investigated whether progesterone alters spontaneous activity of neurons in the nucleus of the solitary tract (NTS). What is the main finding and its importance? In NTS neurons, progesterone decreases the action potential firing frequency in response to current injections and the amplitude of excitatory postsynaptic currents. Based on the established neuroprotective effect of progesterone against excitotoxicity resulting from insults, this inhibitory effect is likely to reflect inhibition of ion fluxes. These results are important because they further our understanding of the mechanisms underlying the diversity of respiratory effects of progesterone. ABSTRACT: Progesterone is known to stimulate breathing, but its actions on the respiratory control system have received limited attention. We addressed this issue at the cellular level by testing the hypothesis that progesterone augments excitatory currents at the level of the nucleus tractus solitarii (NTS). Medullary slices from juvenile male rats (14-17 days of age) containing the commissural region of the NTS (NTScom) were incubated with progesterone (1 µm) or vehicle (0.004% DMSO) for 60 min. We performed whole-cell voltage-clamp recordings of spontaneous excitatory postsynaptic currents (EPSCs) in the NTScom and determined membrane properties by applying depolarizing current steps. In comparison to vehicle-treated cells, progesterone exposure attenuates the firing frequency response to current injection and reduces the EPSC amplitude without modifying the EPSC frequency or the basal membrane properties. These data do not support our hypothesis, because they indicate that incubation with progesterone attenuates intrinsic action potential generation and inhibits excitatory synaptic inputs in the NTS. Given that these results are more in line with the protective effect of progesterone against excitotoxicity resulting from various insults, we propose that progesterone acts via inhibition of ionic flux.


Assuntos
Neurônios/metabolismo , Progesterona/metabolismo , Núcleo Solitário/metabolismo , Potenciais de Ação/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp/métodos , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia
3.
Nat Commun ; 9(1): 5043, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487571

RESUMO

GABAergic interneurons in the hippocampus provide for local and long-distance coordination of neurons in functionally connected areas. Vasoactive intestinal peptide-expressing (VIP+) interneurons occupy a distinct niche in circuitry as many of them specialize in innervating GABAergic cells, thus providing network disinhibition. In the CA1 hippocampus, VIP+ interneuron-selective cells target local interneurons. Here, we discover a type of VIP+ neuron whose axon innervates CA1 and also projects to the subiculum (VIP-LRPs). VIP-LRPs show specific molecular properties and target interneurons within the CA1 area but both interneurons and pyramidal cells within subiculum. They are interconnected through gap junctions but demonstrate sparse spike coupling in vitro. In awake mice, VIP-LRPs decrease their activity during theta-run epochs and are more active during quiet wakefulness but not coupled to sharp-wave ripples. Together, the data provide evidence for VIP interneuron molecular diversity and functional specialization in controlling cell ensembles along the hippocampo-subicular axis.


Assuntos
Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Hipocampo/citologia , Interneurônios/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Feminino , Masculino , Camundongos , Células Piramidais/metabolismo
4.
J Neurosci ; 34(13): 4534-47, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24671999

RESUMO

In cortical networks, different types of inhibitory interneurons control the activity of glutamatergic principal cells and GABAergic interneurons. Principal neurons represent the major postsynaptic target of most interneurons; however, a population of interneurons that is dedicated to the selective innervation of GABAergic cells exists in the CA1 area of the hippocampus. The physiological properties of these cells and their functional relevance for network computations remain unknown. Here, we used a combination of dual simultaneous patch-clamp recordings and targeted optogenetic stimulation in acute mouse hippocampal slices to examine how one class of interneuron-specific (IS) cells controls the activity of its GABAergic targets. We found that type 3 IS (IS3) cells that coexpress the vasoactive intestinal polypeptide (VIP) and calretinin contact several distinct types of interneurons within the hippocampal CA1 stratum oriens/alveus (O/A), with preferential innervation of oriens-lacunosum moleculare cells (OLMs) through dendritic synapses. In contrast, VIP-positive basket cells provided perisomatic inhibition to CA1 pyramidal neurons with the asynchronous GABA release and were not connected with O/A interneurons. Furthermore, unitary IPSCs recorded at IS3-OLM synapses had a small amplitude and low release probability but summated efficiently during high-frequency firing of IS3 interneurons. Moreover, the synchronous generation of a single spike in several IS cells that converged onto a single OLM controlled the firing rate and timing of OLM interneurons. Therefore, dendritic inhibition originating from IS cells is needed for the flexible activity-dependent recruitment of OLM interneurons for feedback inhibition.


Assuntos
Potenciais de Ação/fisiologia , Dendritos/fisiologia , Hipocampo/citologia , Interneurônios/fisiologia , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Potenciais de Ação/genética , Animais , Animais Recém-Nascidos , Dendritos/efeitos dos fármacos , Feminino , Antagonistas GABAérgicos/farmacologia , Proteínas de Fluorescência Verde/genética , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Inibição Neural/genética , Piridazinas/farmacologia , Fatores de Tempo , Peptídeo Intestinal Vasoativo/genética
5.
Front Cell Neurosci ; 4: 130, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21060720

RESUMO

Local circuit and long-range GABAergic projections provide powerful inhibitory control over the operation of hippocampal inhibitory circuits, yet little is known about the input- and target-specific organization of interacting inhibitory networks in relation to their specific functions. Using a combination of two-photon laser scanning photostimulation and whole-cell patch clamp recordings in mice hippocampal slices, we examined the properties of transmission at GABAergic synapses formed onto hippocampal CA1 stratum oriens - lacunosum moleculare (O-LM) interneurons by two major inhibitory inputs: local projection originating from stratum radiatum interneurons and septohippocampal GABAergic terminals. Optical mapping of local inhibitory inputs to O-LM interneurons revealed that vasoactive intestinal polypeptide- and calretinin-positive neurons, with anatomical properties typical of type III interneuron-specific interneurons, provided the major local source of inhibition to O-LM cells. Inhibitory postsynaptic currents evoked by minimal stimulation of this input exhibited small amplitude and significant paired-pulse and multiple-pulse depression during repetitive activity. Moreover, these synapses failed to show any form of long-term synaptic plasticity. In contrast, synapses formed by septohippocampal projection produced higher amplitude and persistent inhibition and exhibited long-term potentiation induced by theta-like activity. These results indicate the input and target-specific segregation in inhibitory control, exerted by two types of GABAergic projections and responsible for distinct dynamics of inhibition in O-LM interneurons. The two inputs are therefore likely to support the differential activity- and brain state-dependent recruitment of hippocampal feedback inhibitory circuits in vivo, crucial for dendritic disinhibition and computations in CA1 pyramidal cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA