Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurorehabil Neural Repair ; 34(4): 299-308, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32089098

RESUMO

Background. Autologous nerve graft is the most common clinical intervention for repairing a nerve gap. However, its regenerative capacity is decreased in part because, unlike a primary repair, the regenerating axons must traverse 2 repair sites. Means to promote nerve regeneration across a graft are needed. Postoperative electrical stimulation (PES) improves nerve growth by reducing staggered regeneration at the coaptation site whereas conditioning electrical stimulation (CES) accelerates axon extension. In this study, we directly compared these electrical stimulation paradigms in a model of nerve autograft repair. Methods. To lay the foundation for clinical translation, regeneration and reinnervation outcomes of CES and PES in a 5-mm nerve autograft model were compared. Sprague-Dawley rats were divided into: (a) CES, (b) PES, and (c) no stimulation cohorts. CES was delivered 1 week prior to nerve cut/coaptation, and PES was delivered immediately following coaptation. Length of nerve regeneration (n = 6/cohort), and behavioral testing (n = 16/cohort) were performed at 14 days and 6 to 14 weeks post-coaptation, respectively. Results. CES treated axons extended 5.9 ± 0.2 mm, significantly longer than PES (3.8 ± 0.2 mm), or no stimulation (2.5 ± 0.2 mm) (P < .01). Compared with PES animals, the CES animals had significantly improved sensory recovery (von Frey filament testing, intraepidermal nerve fiber reinnervation) (P < .001) and motor reinnervation (horizontal ladder, gait analysis, nerve conduction studies, neuromuscular junction analysis) (P < .01). Conclusion. CES resulted in faster regeneration through the nerve graft and improved sensorimotor recovery compared to all other cohorts. It is a promising treatment to improve outcomes in patients undergoing nerve autograft repair.


Assuntos
Axônios/fisiologia , Estimulação Elétrica , Regeneração Nervosa/fisiologia , Cuidados Pós-Operatórios , Cuidados Pré-Operatórios , Recuperação de Função Fisiológica/fisiologia , Nervo Tibial/fisiologia , Nervo Tibial/transplante , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Estimulação Elétrica/métodos , Extremidade Inferior , Masculino , Atividade Motora/fisiologia , Condução Nervosa/fisiologia , Ratos , Ratos Sprague-Dawley , Método Simples-Cego , Transplante Autólogo
2.
Exp Neurol ; 315: 60-71, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30731076

RESUMO

Peripheral nerve regeneration following injury is often incomplete, resulting in significant personal and socioeconomic costs. Although a conditioning crush lesion prior to surgical nerve transection and repair greatly promotes nerve regeneration and functional recovery, feasibility and ethical considerations have hindered its clinical applicability. In a recent proof of principle study, we demonstrated that conditioning electrical stimulation (CES) had effects on early nerve regeneration, similar to that seen in conditioning crush lesions (CCL). To convincingly determine its clinical utility, establishing the effects of CES on target reinnervation and functional outcomes is of utmost importance. In this study, we found that CES improved nerve regeneration and reinnervation well beyond that of CCL. Specifically, compared to CCL, CES resulted in greater intraepidermal skin and NMJ reinnervation, and greater physiological and functional recovery including mechanosensation, compound muscle action potential on nerve conduction studies, normalization of gait pattern, and motor performance on the horizontal ladder test. These findings have direct clinical relevance as CES could be delivered at the bedside before scheduled nerve surgery.


Assuntos
Terapia por Estimulação Elétrica , Regeneração Nervosa , Potenciais de Ação , Animais , Marcha , Masculino , Compressão Nervosa , Condução Nervosa , Junção Neuromuscular/patologia , Traumatismos dos Nervos Periféricos/patologia , Desempenho Psicomotor , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Sensação , Pele/inervação
3.
JAMA ; 314(17): 1850-60, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26447779

RESUMO

IMPORTANCE: Evolutionary medicine may provide insights into human physiology and pathophysiology, including tumor biology. OBJECTIVE: To identify mechanisms for cancer resistance in elephants and compare cellular response to DNA damage among elephants, healthy human controls, and cancer-prone patients with Li-Fraumeni syndrome (LFS). DESIGN, SETTING, AND PARTICIPANTS: A comprehensive survey of necropsy data was performed across 36 mammalian species to validate cancer resistance in large and long-lived organisms, including elephants (n = 644). The African and Asian elephant genomes were analyzed for potential mechanisms of cancer resistance. Peripheral blood lymphocytes from elephants, healthy human controls, and patients with LFS were tested in vitro in the laboratory for DNA damage response. The study included African and Asian elephants (n = 8), patients with LFS (n = 10), and age-matched human controls (n = 11). Human samples were collected at the University of Utah between June 2014 and July 2015. EXPOSURES: Ionizing radiation and doxorubicin. MAIN OUTCOMES AND MEASURES: Cancer mortality across species was calculated and compared by body size and life span. The elephant genome was investigated for alterations in cancer-related genes. DNA repair and apoptosis were compared in elephant vs human peripheral blood lymphocytes. RESULTS: Across mammals, cancer mortality did not increase with body size and/or maximum life span (eg, for rock hyrax, 1% [95% CI, 0%-5%]; African wild dog, 8% [95% CI, 0%-16%]; lion, 2% [95% CI, 0%-7%]). Despite their large body size and long life span, elephants remain cancer resistant, with an estimated cancer mortality of 4.81% (95% CI, 3.14%-6.49%), compared with humans, who have 11% to 25% cancer mortality. While humans have 1 copy (2 alleles) of TP53, African elephants have at least 20 copies (40 alleles), including 19 retrogenes (38 alleles) with evidence of transcriptional activity measured by reverse transcription polymerase chain reaction. In response to DNA damage, elephant lymphocytes underwent p53-mediated apoptosis at higher rates than human lymphocytes proportional to TP53 status (ionizing radiation exposure: patients with LFS, 2.71% [95% CI, 1.93%-3.48%] vs human controls, 7.17% [95% CI, 5.91%-8.44%] vs elephants, 14.64% [95% CI, 10.91%-18.37%]; P < .001; doxorubicin exposure: human controls, 8.10% [95% CI, 6.55%-9.66%] vs elephants, 24.77% [95% CI, 23.0%-26.53%]; P < .001). CONCLUSIONS AND RELEVANCE: Compared with other mammalian species, elephants appeared to have a lower-than-expected rate of cancer, potentially related to multiple copies of TP53. Compared with human cells, elephant cells demonstrated increased apoptotic response following DNA damage. These findings, if replicated, could represent an evolutionary-based approach for understanding mechanisms related to cancer suppression.


Assuntos
Evolução Biológica , Dano ao DNA , Resistência à Doença/genética , Elefantes/genética , Neoplasias/genética , Animais , Apoptose , Estudos de Casos e Controles , Reparo do DNA , Doxorrubicina , Genes p53 , Humanos , Síndrome de Li-Fraumeni/genética , Linfócitos , Mamíferos/genética , Neoplasias/mortalidade , Radiação Ionizante
4.
ACS Med Chem Lett ; 6(1): 63-7, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25589932

RESUMO

Pim-1 has emerged as an attractive target for developing therapeutic agents for treating disorders involving abnormal cell growth, especially cancers. Herein we present lead optimization, chemical synthesis and biological evaluation of pyrazolo[1,5-a]pyrimidine compounds as potent and selective inhibitors of Pim-1 starting from a hit from virtual screening. These pyrazolo[1,5-a]pyrimidine compounds strongly inhibited Pim-1 and Flt-3 kinases. Selected compounds suppressed both the phosphorylation of BAD protein in a cell-based assay and 2-dimensional colony formation in a clonogenic cell survival assay at submicromolar potency, suggesting that cellular activity was mediated through inhibition of Pim-1. Moreover, these Pim-1 inhibitors did not show significant hERG inhibition at 30 µM concentration. The lead compound proved to be highly selective against a panel of 119 oncogenic kinases, indicating it had an improved safety profile compared with the first generation Pim-1 inhibitor SGI-1776.

5.
Neoplasia ; 16(5): 403-12, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24953177

RESUMO

The proto-oncogene proviral integration site for moloney murine leukemia virus (PIM) kinases (PIM-1, PIM-2, and PIM-3) are serine/threonine kinases that are involved in a number of signaling pathways important to cancer cells. PIM kinases act in downstream effector functions as inhibitors of apoptosis and as positive regulators of G1-S phase progression through the cell cycle. PIM kinases are upregulated in multiple cancer indications, including lymphoma, leukemia, multiple myeloma, and prostate, gastric, and head and neck cancers. Overexpression of one or more PIM family members in patient tumors frequently correlates with poor prognosis. The aim of this investigation was to evaluate PIM expression in low- and high-grade urothelial carcinoma and to assess the role PIM function in disease progression and their potential to serve as molecular targets for therapy. One hundred thirty-seven cases of urothelial carcinoma were included in this study of surgical biopsy and resection specimens. High levels of expression of all three PIM family members were observed in both noninvasive and invasive urothelial carcinomas. The second-generation PIM inhibitor, TP-3654, displays submicromolar activity in pharmacodynamic biomarker modulation, cell proliferation studies, and colony formation assays using the UM-UC-3 bladder cancer cell line. TP-3654 displays favorable human ether-à-go-go-related gene and cytochrome P450 inhibition profiles compared with the first-generation PIM inhibitor, SGI-1776, and exhibits oral bioavailability. In vivo xenograft studies using a bladder cancer cell line show that PIM kinase inhibition can reduce tumor growth, suggesting that PIM kinase inhibitors may be active in human urothelial carcinomas.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células de Transição/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Neoplasias da Bexiga Urinária/enzimologia , Animais , Western Blotting , Feminino , Humanos , Imidazóis/farmacologia , Masculino , Camundongos , Camundongos Nus , Reação em Cadeia da Polimerase Multiplex , Oligopeptídeos/farmacologia , Proto-Oncogene Mas , Piridazinas/farmacologia , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução Genética , Peptídeo Intestinal Vasoativo/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA