Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
BMC Cancer ; 23(1): 180, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36814222

RESUMO

BACKGROUND: Advanced gastro-oesophageal cancer (AGOC) carries a poor prognosis. No standard of care treatment options are available after first and second-line therapies. Regorafenib is an oral multi-targeted tyrosine kinase inhibitor targeting angiogenic, stromal, and oncogenic receptor tyrosine kinases. Regorafenib 160 mg daily prolonged progression free survival compared to placebo (INTEGRATE, phase 2). Regorafenib 80 mg daily in combination with nivolumab 3 mg/kg showed promising objective response rates (REGONIVO). METHODS/DESIGN: INTEGRATE II (INTEGRATE IIa and IIb) platform comprises two international phase III randomised controlled trials (RCT) with 2:1 randomisation in favor of experimental intervention. INTEGRATE IIa (double-blind) compares regorafenib 160 mg daily on days 1 to 21 of each 28-day cycle to placebo. INTEGRATE IIb (open label) compares REGONIVO, regorafenib 90 mg days 1 to 21 in combination with intravenous nivolumab 240 mg days 1 and 15 each 28-day cycle with investigator's choice of chemotherapy (control). Treatment continues until disease progression or intolerable adverse events as per protocol. Eligible participants include adults with AGOC who have failed two or more lines of treatment. Stratification is by location of tumour (INTEGRATE IIa only), geographic region, prior VEGF inhibitor and prior immunotherapy use (INTEGRATE IIb only). Primary endpoint is overall survival. Secondary endpoints are progression free survival, objective response rate, quality of life, and safety. Tertiary/correlative objectives include biomarker and pharmacokinetic evaluation. DISCUSSION: INTEGRATE II provides a platform to evaluate the clinical utility of regorafenib alone, as well as regorafenib in combination with nivolumab in treatment of participants with refractory AGOC. TRIAL REGISTRATION: INTEGRATE IIa prospectively registered 1 April 2016 Australia New Zealand Clinical Trial Registry: ACTRN12616000420448 (ClinicalTrials.gov NCT02773524). INTEGRATE IIb prospectively registered 10 May 2021 ClinicalTrials.gov: NCT04879368.


Assuntos
Neoplasias Esofágicas , Neoplasias Gástricas , Adulto , Humanos , Nivolumabe/uso terapêutico , Piridinas/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Esofágicas/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica , Método Duplo-Cego , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
Clin Appl Thromb Hemost ; 26: 1076029620962226, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33064561

RESUMO

Rivaroxaban after total knee arthroplasty (TKA) is used to prevent postoperative venous thromboembolism (VTE); however, despite thromboprophylaxis, some patients still develop postoperative VTE. To determine whether tourniquet time, time to initiate rivaroxaban (TTIRIV), or Body Mass Index (BMI) was associated with postoperative VTE. A retrospective case-control study was conducted. Those patients that developed VTE despite prophylaxis (cases) were compared to controls (no VTE). A univariate analysis was conducted (p < 0.05 statistically significant). Seven VTE cases were identified from 234 TKA-patients. Patients with and without VTE had BMI of 40.1 ± 9.1 and 32.8 ± 7.5, respectively (p = 0.064). TTIRIV in VTE and control group was 28.2 ± 4.7 hours and 26.4 ± 4.2 hours, respectively (p = 0.39). Mean tourniquet time in VTE and control group was 65.0 ± 8.7 minutes and 49 ± 8.8 minutes, respectively (p = 0.0007). Statistically significant differences in tourniquet times were noted between VTE and non-VTE group but not for TTIRIV and BMI. Prolonged tourniquet use could pose a potential risk factor for postoperative VTE. Thromboprophylaxis management may need to be adjusted, based on patient-specific factors that could include increasing doses of oral anticoagulants and/or mechanical prophylaxis. However, further large-scale studies are required to establish pathophysiology.


Assuntos
Artroplastia do Joelho/efeitos adversos , Inibidores do Fator Xa/uso terapêutico , Rivaroxabana/uso terapêutico , Tromboembolia Venosa/tratamento farmacológico , Idoso , Artroplastia do Joelho/métodos , Estudos de Casos e Controles , Inibidores do Fator Xa/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Rivaroxabana/farmacologia
3.
Ann Surg Oncol ; 27(7): 2506-2515, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31997125

RESUMO

BACKGROUND: While combination therapy with nab-paclitaxel/gemcitabine (nab-gem) is effective in pancreatic ductal adenocarcinoma (PDAC), its efficacy as perioperative chemotherapy is unknown. The primary objective of this multicenter, prospective, single-arm, phase II study was to determine whether neoadjuvant therapy with nab-gem was associated with higher complete resection rates (R0) in resectable PDAC, while the secondary objectives were to determine the utility of radiological assessment of response to preoperative chemotherapy and the safety and efficacy of nab-gem as perioperative therapy. METHODS: Patients were recruited from eight Australian sites, and 42 patients with radiologically defined resectable PDAC and an Eastern Cooperative Oncology Group performance status of 0-2 were enrolled. Participants received two cycles of preoperative nab-paclitaxel 125 mg/m2 and gemcitabine 1000 mg/m2 on days 1, 8, and 15 (28-day cycle) presurgery, and four cycles postoperatively. Early response to chemotherapy was measured with fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) scans on day 15. RESULTS: Preoperative nab-gem was completed by 93% of participants, but only 63% postoperatively. Thirty-six patients had surgery: 6 (17%) were unresectable, 15 (52%) had R0 (≥ 1 mm) resections, 14 (48%) had R1 (< 1 mm) resections, and 1 patient did not have PDAC. Median progression-free survival was 12.3 months and median overall survival (OS) was 23.5 months: R0 patients had an OS of 35 months versus 25.6 months for R1 patients after surgery. Seven patients had not progressed after 43 months. CONCLUSIONS: The GAP trial demonstrated that perioperative nab-gem was tolerable. Although the primary endpoint of an 85% R0 rate was not met, the R0 rate was similar to trials using a > 1 mm R0 resection definition, and survival rates were comparable with recent adjuvant studies.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Pancreáticas , Albuminas/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Humanos , Paclitaxel/administração & dosagem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/cirurgia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Prospectivos , Gencitabina
4.
Cell Commun Signal ; 18(1): 13, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31987043

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) accounts for 16% of breast cancers and represents an aggressive subtype that lacks targeted therapeutic options. In this study, mass spectrometry (MS)-based tyrosine phosphorylation profiling identified aberrant FGFR3 activation in a subset of TNBC cell lines. This kinase was therefore evaluated as a potential therapeutic target. METHODS: MS-based tyrosine phosphorylation profiling was undertaken across a panel of 24 TNBC cell lines. Immunoprecipitation and Western blot were used to further characterize FGFR3 phosphorylation. Indirect immunofluorescence and confocal microscopy were used to determine FGFR3 localization. The selective FGFR1-3 inhibitor, PD173074 and siRNA knockdowns were used to characterize the functional role of FGFR3 in vitro. The TCGA and Metabric breast cancer datasets were interrogated to identify FGFR3 alterations and how they relate to breast cancer subtype and overall patient survival. RESULTS: High FGFR3 expression and phosphorylation were detected in SUM185PE cells, which harbor a FGFR3-TACC3 gene fusion. Low FGFR3 phosphorylation was detected in CAL51, MFM-223 and MDA-MB-231 cells. In SUM185PE cells, the FGFR3-TACC3 fusion protein contributed the majority of phosphorylated FGFR3, and largely localized to the cytoplasm and plasma membrane, with staining at the mitotic spindle in a small subset of cells. Knockdown of the FGFR3-TACC3 fusion and wildtype FGFR3 in SUM185PE cells decreased FRS2, AKT and ERK phosphorylation, and induced cell death. Knockdown of wildtype FGFR3 resulted in only a trend for decreased proliferation. PD173074 significantly decreased FRS2, AKT and ERK activation, and reduced SUM185PE cell proliferation. Cyclin A and pRb were also decreased in the presence of PD173074, while cleaved PARP was increased, indicating cell cycle arrest in G1 phase and apoptosis. Knockdown of FGFR3 in CAL51, MFM-223 and MDA-MB-231 cells had no significant effect on cell proliferation. Interrogation of public datasets revealed that increased FGFR3 expression in breast cancer was significantly associated with reduced overall survival, and that potentially oncogenic FGFR3 alterations (eg mutation and amplification) occur in the TNBC/basal, luminal A and luminal B subtypes, but are rare. CONCLUSIONS: These results indicate that targeting FGFR3 may represent a therapeutic option for TNBC, but only for patients with oncogenic FGFR3 alterations, such as the FGFR3-TACC3 fusion. Video abstract.


Assuntos
Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/fisiopatologia
5.
Mol Cell Proteomics ; 18(7): 1410-1427, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31061140

RESUMO

In prostate cancer, cancer-associated fibroblasts (CAF) exhibit contrasting biological properties to non-malignant prostate fibroblasts (NPF) and promote tumorigenesis. Resolving intercellular signaling pathways between CAF and prostate tumor epithelium may offer novel opportunities for research translation. To this end, the proteome and phosphoproteome of four pairs of patient-matched CAF and NPF were characterized to identify discriminating proteomic signatures. Samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with a hyper reaction monitoring data-independent acquisition (HRM-DIA) workflow. Proteins that exhibited a significant increase in CAF versus NPF were enriched for the functional categories "cell adhesion" and the "extracellular matrix." The CAF phosphoproteome exhibited enhanced phosphorylation of proteins associated with the "spliceosome" and "actin binding." STRING analysis of the CAF proteome revealed a prominent interaction hub associated with collagen synthesis, modification, and signaling. It contained multiple collagens, including the fibrillar types COL1A1/2 and COL5A1; the receptor tyrosine kinase discoidin domain-containing receptor 2 (DDR2), a receptor for fibrillar collagens; and lysyl oxidase-like 2 (LOXL2), an enzyme that promotes collagen crosslinking. Increased activity and/or expression of LOXL2 and DDR2 in CAF were confirmed by enzymatic assays and Western blotting analyses. Pharmacological inhibition of CAF-derived LOXL2 perturbed extracellular matrix (ECM) organization and decreased CAF migration in a wound healing assay. Further, it significantly impaired the motility of co-cultured RWPE-2 prostate tumor epithelial cells. These results indicate that CAF-derived LOXL2 is an important mediator of intercellular communication within the prostate tumor microenvironment and is a potential therapeutic target.


Assuntos
Aminoácido Oxirredutases/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Neoplasias da Próstata/metabolismo , Proteômica , Microambiente Tumoral , Comunicação Autócrina , Linhagem Celular Tumoral , Movimento Celular , Células Epiteliais/patologia , Matriz Extracelular/metabolismo , Humanos , Masculino , Proteínas de Neoplasias/metabolismo , Comunicação Parácrina , Fosfoproteínas/metabolismo , Fosforilação , Próstata/metabolismo , Próstata/patologia , Proteoma/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais
6.
Nat Commun ; 10(1): 296, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30655532

RESUMO

Despite significant progress, our understanding of how specific oncogenes transform cells is still limited and likely underestimates the complexity of downstream signalling events. To address this gap, we use mass spectrometry-based chemical proteomics to characterize the global impact of an oncogene on the expressed kinome, and then functionally annotate the regulated kinases. As an example, we identify 63 protein kinases exhibiting altered expression and/or phosphorylation in Src-transformed mammary epithelial cells. An integrated siRNA screen identifies nine kinases, including SGK1, as being essential for Src-induced transformation. Accordingly, we find that Src positively regulates SGK1 expression in triple negative breast cancer cells, which exhibit a prominent signalling network governed by Src family kinases. Furthermore, combined inhibition of Src and SGK1 reduces colony formation and xenograft growth more effectively than either treatment alone. Therefore, this approach not only provides mechanistic insights into oncogenic transformation but also aids the design of improved therapeutic strategies.


Assuntos
Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Imediatamente Precoces/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Quinases da Família src/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzodioxóis/farmacologia , Benzodioxóis/uso terapêutico , Linhagem Celular Tumoral , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/patologia , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Proteínas Imediatamente Precoces/antagonistas & inibidores , Espectrometria de Massas/métodos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oncogenes/genética , Mapeamento de Interação de Proteínas/métodos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteômica/métodos , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/antagonistas & inibidores
7.
BMC Cancer ; 18(1): 854, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30157803

RESUMO

BACKGROUND: Bleomycin, etoposide, and cisplatin (BEP) chemotherapy administered every 3 weeks for 4 cycles remains the standard first line treatment for patients with intermediate- and poor-risk metastatic germ cell tumours (GCTs). Administering standard chemotherapy 2-weekly rather than 3-weekly, so-called 'accelerating chemotherapy', has improved cure rates in other cancers. An Australian multicentre phase 2 trial demonstrated this regimen is feasible and tolerable with efficacy data that appears promising. The aim of this trial is to determine if accelerated BEP is superior to standard BEP as first line chemotherapy for adult and paediatric male and female participants with intermediate and poor risk metastatic GCTs. METHODS: This is an open label, randomised, stratified, 2-arm, international multicentre, 2 stage, phase 3 clinical trial. Participants are randomised 1:1 to receive accelerated BEP or standard BEP chemotherapy. Eligible male or female participants, aged between 11 and 45 years with intermediate or poor-risk metastatic GCTs for first line chemotherapy will be enrolled from Australia, the United Kingdom and the United States. Participants will have regular follow up for at least 5 years. The primary endpoint for stage 1 of the trial (n = 150) is complete response rate and for the entire trial (n = 500) is progression free survival. Secondary endpoints include response following treatment completion (by a protocol-specific response criteria), adverse events, health-related quality of life, treatment preference, delivered dose-intensity of chemotherapy (relative to standard BEP), overall survival and associations between biomarkers (to be specified) and their correlations with clinical outcomes. DISCUSSION: This is the first international randomised clinical trial for intermediate and poor-risk metastatic extra-cranial GCTs involving both adult and pediatric age groups open to both males and females. It is also the largest, current randomised trial for germ cell tumours in the world. Positive results for this affordable intervention could change the global standard of care for intermediate and poor risk germ cell tumours, improve cure rates, avoid the need for toxic and costly salvage treatment, and return young adults to long, healthy and productive lives. TRIAL REGISTRATION: ACTRN 12613000496718 on 3rd May 2013 and Clinicaltrials.gov NCT02582697 on 21st October 2015.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos Clínicos , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Embrionárias de Células Germinativas/patologia , Adolescente , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Bleomicina/efeitos adversos , Bleomicina/uso terapêutico , Criança , Pré-Escolar , Cisplatino/efeitos adversos , Cisplatino/uso terapêutico , Ensaios Clínicos Fase III como Assunto , Etoposídeo/efeitos adversos , Etoposídeo/uso terapêutico , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Estudos Multicêntricos como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Projetos de Pesquisa , Adulto Jovem
8.
Mol Cell Proteomics ; 17(8): 1470-1486, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29632047

RESUMO

Inhibition of the heat shock protein 90 (Hsp90) chaperone is a promising therapeutic strategy to target expression of the androgen receptor (AR) and other oncogenic drivers in prostate cancer cells. However, identification of clinically-relevant responses and predictive biomarkers is essential to maximize efficacy and treatment personalization. Here, we combined mass spectrometry (MS)-based proteomic analyses with a unique patient-derived explant (PDE) model that retains the complex microenvironment of primary prostate tumors. Independent discovery and validation cohorts of PDEs (n = 16 and 30, respectively) were cultured in the absence or presence of Hsp90 inhibitors AUY922 or 17-AAG. PDEs were analyzed by LC-MS/MS with a hyper-reaction monitoring data independent acquisition (HRM-DIA) workflow, and differentially expressed proteins identified using repeated measure analysis of variance (ANOVA; raw p value <0.01). Using gene set enrichment, we found striking conservation of the most significantly AUY922-altered gene pathways between the discovery and validation cohorts, indicating that our experimental and analysis workflows were robust. Eight proteins were selectively altered across both cohorts by the most potent inhibitor, AUY922, including TIMP1, SERPINA3 and CYP51A (adjusted p < 0.01). The AUY922-mediated decrease in secretory TIMP1 was validated by ELISA of the PDE culture medium. We next exploited the heterogeneous response of PDEs to 17-AAG in order to detect predictive biomarkers of response and identified PCBP3 as a marker with increased expression in PDEs that had no response or increased in proliferation. Also, 17-AAG treatment led to increased expression of DNAJA1 in PDEs that exhibited a cytostatic response, revealing potential drug resistance mechanisms. This selective regulation of DNAJA1 was validated by Western blot analysis. Our study establishes "proof-of-principle" that proteomic profiling of drug-treated PDEs represents an effective and clinically-relevant strategy for identification of biomarkers that associate with certain tumor-specific responses.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias da Próstata/metabolismo , Proteômica/métodos , Benzoquinonas/farmacologia , Proliferação de Células/efeitos dos fármacos , Estudos de Coortes , Resistencia a Medicamentos Antineoplásicos , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Isoxazóis/farmacologia , Lactamas Macrocíclicas/farmacologia , Masculino , Proteínas de Neoplasias/metabolismo , Análise de Componente Principal , Neoplasias da Próstata/patologia , Proteoma/metabolismo , Reprodutibilidade dos Testes , Resorcinóis/farmacologia
9.
Nat Commun ; 8(1): 1157, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29079850

RESUMO

The mammalian pseudokinase SgK223, and its structurally related homologue SgK269, are oncogenic scaffolds that nucleate the assembly of specific signalling complexes and regulate tyrosine kinase signalling. Both SgK223 and SgK269 form homo- and hetero-oligomers, a mechanism that underpins a diversity of signalling outputs. However, mechanistic insights into SgK223 and SgK269 homo- and heterotypic association are lacking. Here we present the crystal structure of SgK223 pseudokinase domain and its adjacent N- and C-terminal helices. The structure reveals how the N- and C-regulatory helices engage in a novel fold to mediate the assembly of a high-affinity dimer. In addition, we identified regulatory interfaces on the pseudokinase domain required for the self-assembly of large open-ended oligomers. This study highlights the diversity in how the kinase fold mediates non-catalytic functions and provides mechanistic insights into how the assembly of these two oncogenic scaffolds is achieved in order to regulate signalling output.


Assuntos
Proteínas de Transporte/química , Proteínas Tirosina Quinases/química , Trifosfato de Adenosina/química , Área Sob a Curva , Sítios de Ligação , Catálise , Linhagem Celular Tumoral , Análise por Conglomerados , Cristalografia por Raios X , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Peptídeos e Proteínas de Sinalização Intracelular , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Proteínas Recombinantes/química
10.
Cancer Res ; 77(16): 4279-4292, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28634201

RESUMO

Despite intensive multimodal treatment of sarcomas, a heterogeneous group of malignant tumors arising from connective tissue, survival remains poor. Candidate-based targeted treatments have demonstrated limited clinical success, urging an unbiased and comprehensive analysis of oncogenic signaling networks to reveal therapeutic targets and personalized treatment strategies. Here we applied mass spectrometry-based phosphoproteomic profiling to the largest and most heterogeneous set of sarcoma cell lines characterized to date and identified novel tyrosine phosphorylation patterns, enhanced tyrosine kinases in specific subtypes, and potential driver kinases. ALK was identified as a novel driver in the Aska-SS synovial sarcoma (SS) cell line via expression of an ALK variant with a large extracellular domain deletion (ALKΔ2-17). Functional ALK dependency was confirmed in vitro and in vivo with selective inhibitors. Importantly, ALK immunopositivity was detected in 6 of 43 (14%) of SS patient specimens, one of which exhibited an ALK rearrangement. High PDGFRα phosphorylation also characterized SS cell lines, which was accompanied by enhanced MET activation in Yamato-SS cells. Although Yamato-SS cells were sensitive to crizotinib (ALK/MET-inhibitor) but not pazopanib (VEGFR/PDGFR-inhibitor) monotherapy in vitro, synergistic effects were observed upon drug combination. In vivo, both drugs were individually effective, with pazopanib efficacy likely attributable to reduced angiogenesis. MET or PDGFRα expression was detected in 58% and 84% of SS patients, respectively, with coexpression in 56%. Consequently, our integrated approach has led to the identification of ALK and MET as promising therapeutic targets in SS. Cancer Res; 77(16); 4279-92. ©2017 AACR.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Sarcoma Sinovial/tratamento farmacológico , Sarcoma Sinovial/enzimologia , Quinase do Linfoma Anaplásico , Animais , Linhagem Celular Tumoral , Estudos de Coortes , Crizotinibe , Feminino , Humanos , Indazóis , Camundongos , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular , Fosforilação , Proteômica , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Pirazóis/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/biossíntese , Sarcoma Sinovial/genética , Transdução de Sinais , Sulfonamidas/farmacologia , Sulfonas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Biol Chem ; 291(41): 21571-21583, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27531744

RESUMO

SgK269/PEAK1 is a pseudokinase and scaffolding protein that plays a critical role in regulating growth factor receptor signal output and is implicated in the progression of several cancers, including those of the breast, colon, and pancreas. SgK269 is structurally related to SgK223, a human pseudokinase that also functions as a scaffold but recruits a distinct repertoire of signaling proteins compared with SgK269. Structural similarities between SgK269 and SgK223 include a predicted α-helical region (designated CH) immediately preceding the conserved C-terminal pseudokinase (PK) domain. Structure-function analyses of SgK269 in MCF-10A mammary epithelial cells demonstrated a critical role for the CH and PK regions in promoting cell migration and Stat3 activation. Characterization of the SgK269 "interactome" by mass spectrometry-based proteomics identified SgK223 as a novel binding partner, and association of SgK269 with SgK223 in cells was dependent on the presence of the CH and PK domains of both pseudokinases. Homotypic association of SgK269 and SgK223 was also demonstrated and exhibited the same structural requirements. Further analysis using pulldowns and size-exclusion chromatography underscored the critical role of the CH region in SgK269/SgK223 association. Importantly, although SgK269 bridged SgK223 to Grb2, it was unable to activate Stat3 or efficiently enhance migration in SgK223 knock-out cells generated by CRISPR/Cas9. These results reveal previously unrecognized interplay between two oncogenic scaffolds and demonstrate a novel signaling mechanism for pseudokinases whereby homotypic and heterotypic association is used to assemble scaffolding complexes with distinct binding properties and hence qualitatively regulate signal output.


Assuntos
Proteínas de Transporte/metabolismo , Movimento Celular/fisiologia , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteínas de Transporte/genética , Linhagem Celular , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Domínios Proteicos , Proteínas Tirosina Quinases/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
12.
Breast Cancer Res ; 16(5): 437, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25200860

RESUMO

INTRODUCTION: Although aberrant tyrosine kinase signalling characterises particular breast cancer subtypes, a global analysis of tyrosine phosphorylation in mouse models of breast cancer has not been undertaken to date. This may identify conserved oncogenic pathways and potential therapeutic targets. METHODS: We applied an immunoaffinity/mass spectrometry workflow to three mouse models: murine stem cell virus-Neu, expressing truncated Neu, the rat orthologue of human epidermal growth factor receptor 2, Her2 (HER2); mouse mammary tumour virus-polyoma virus middle T antigen (PyMT); and the p53-/- transplant model (p53). Pathways and protein-protein interaction networks were identified by bioinformatics analysis. Molecular mechanisms underpinning differences in tyrosine phosphorylation were characterised by Western blot analysis and array comparative genomic hybridisation. The functional role of mesenchymal-epithelial transition factor (Met) in a subset of p53-null tumours was interrogated using a selective tyrosine kinase inhibitor (TKI), small interfering RNA (siRNA)-mediated knockdown and cell proliferation assays. RESULTS: The three models could be distinguished on the basis of tyrosine phosphorylation signatures and signalling networks. HER2 tumours exhibited a protein-protein interaction network centred on avian erythroblastic leukaemia viral oncogene homologue 2 (Erbb2), epidermal growth factor receptor and platelet-derived growth factor receptor α, and they displayed enhanced tyrosine phosphorylation of ERBB receptor feedback inhibitor 1. In contrast, the PyMT network displayed significant enrichment for components of the phosphatidylinositol 3-kinase signalling pathway, whereas p53 tumours exhibited increased tyrosine phosphorylation of Met and components or regulators of the cytoskeleton and shared signalling network characteristics with basal and claudin-low breast cancer cells. A subset of p53 tumours displayed markedly elevated cellular tyrosine phosphorylation and Met expression, as well as Met gene amplification. Treatment of cultured p53-null cells exhibiting Met amplification with a selective Met TKI abrogated aberrant tyrosine phosphorylation and blocked cell proliferation. The effects on proliferation were recapitulated when Met was knocked down using siRNA. Additional subtypes of p53 tumours exhibited increased tyrosine phosphorylation of other oncogenes, including Peak1/SgK269 and Prex2. CONCLUSION: This study provides network-level insights into signalling in the breast cancer models utilised and demonstrates that comparative phosphoproteomics can identify conserved oncogenic signalling pathways. The Met-amplified, p53-null tumours provide a new preclinical model for a subset of triple-negative breast cancers.


Assuntos
Neoplasias Mamárias Experimentais/metabolismo , Fosfoproteínas/metabolismo , Fosfotirosina/metabolismo , Proteoma/metabolismo , Animais , Feminino , Dosagem de Genes , Humanos , Indóis/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transplante de Neoplasias , Oncogenes , Mapas de Interação de Proteínas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Sulfonas/farmacologia
13.
Biochem Genet ; 52(5-6): 225-32, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24504995

RESUMO

Marfan syndrome is an autosomal dominant disease caused by mutations in the gene encoding for fibrillin-1 (FBN1). More than 1,000 FBN1 mutations have been identified, which may lead to multiple organ involvement, particularly of the ocular, skeletal, and cardiovascular systems. Mutations in exons 59-65 have been reported in the past to cause mild Marfan-like fibrillinopathies. We report a family with a mutation in exon 63 that manifests with significant cardiovascular system involvement such as aortic root dilatations, dissection of the aorta, and sudden death at a young age. Genetic analysis revealed that four related individuals are positive for a novel heterozygous Cys2633Arg mutation in exon 63. Their genotype-phenotype profile (based on the revised Ghent nosology) is described. We postulate that the Cys2633Arg mutation may manifest with significant and progressive enlargement of the aortic root, risk of aortic dissections, and minor skeletal abnormalities, without involving the ocular system (i.e., ectopia lentis).


Assuntos
Cisteína/genética , Síndrome de Marfan/genética , Proteínas dos Microfilamentos/genética , Adulto , Sequência de Aminoácidos , Sequência Conservada , Éxons , Feminino , Fibrilina-1 , Fibrilinas , Estudos de Associação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Fenótipo
14.
J Biol Chem ; 288(41): 29394-402, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23990470

RESUMO

The nonspecific binding of heparin to plasma proteins compromises its anticoagulant activity by reducing the amount of heparin available to bind antithrombin. In addition, interaction of heparin with fibrin promotes formation of a ternary heparin-thrombin-fibrin complex that protects fibrin-bound thrombin from inhibition by the heparin-antithrombin complex. Previous studies have shown that heparin binds the E domain of fibrinogen. The current investigation examines the role of Zn(2+) in this interaction because Zn(2+) is released locally by platelets and both heparin and fibrinogen bind the cation, resulting in greater protection from inhibition by antithrombin. Zn(2+) promotes heparin binding to fibrinogen, as determined by chromatography, fluorescence, and surface plasmon resonance. Compared with intact fibrinogen, there is reduced heparin binding to fragment X, a clottable plasmin degradation product of fibrinogen. A monoclonal antibody directed against a portion of the fibrinogen αC domain removed by plasmin attenuates binding of heparin to fibrinogen and a peptide analog of this region binds heparin in a Zn(2+)-dependent fashion. These results indicate that the αC domain of fibrinogen harbors a Zn(2+)-dependent heparin binding site. As a consequence, heparin-catalyzed inhibition of factor Xa by antithrombin is compromised by fibrinogen to a greater extent when Zn(2+) is present. These results reveal the mechanism by which Zn(2+) augments the capacity of fibrinogen to impair the anticoagulant activity of heparin.


Assuntos
Fibrinogênio/metabolismo , Heparina/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Antitrombinas/metabolismo , Sítios de Ligação/genética , Ligação Competitiva , Fator Xa/metabolismo , Fibrina/metabolismo , Fibrinogênio/química , Fibrinogênio/genética , Humanos , Cinética , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Espectrometria de Fluorescência , Ressonância de Plasmônio de Superfície
15.
Cancer Res ; 73(6): 1969-80, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23378338

RESUMO

Basal breast cancer cells feature high expression of the Src family kinase Lyn that has been implicated in the pathogenicity of this disease. In this study, we identified novel Lyn kinase substrates, the most prominent of which was the atypical kinase SgK269 (PEAK1). In breast cancer cells, SgK269 expression associated with the basal phenotype. In primary breast tumors, SgK269 overexpression was detected in a subset of basal, HER2-positive, and luminal cancers. In immortalized MCF-10A mammary epithelial cells, SgK269 promoted transition to a mesenchymal phenotype and increased cell motility and invasion. Growth of MCF-10A acini in three-dimensional (3D) culture was enhanced upon SgK269 overexpression, which induced an abnormal, multilobular acinar morphology and promoted extracellular signal-regulated kinase (Erk) and Stat3 activation. SgK269 Y635F, mutated at a major Lyn phosphorylation site, did not enhance acinar size or cellular invasion. We show that Y635 represents a Grb2-binding site that promotes both Stat3 and Erk activation in 3D culture. RNA interference-mediated attenuation of SgK269 in basal breast cancer cells promoted acquisition of epithelial characteristics and decreased anchorage-independent growth. Together, our results define a novel signaling pathway in basal breast cancer involving Lyn and SgK269 that offers clinical opportunities for therapeutic intervention.


Assuntos
Neoplasias da Mama/enzimologia , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo , Neoplasias da Mama/patologia , Divisão Celular , Linhagem Celular Tumoral , Feminino , Humanos , Microscopia de Fluorescência , Invasividade Neoplásica , Fosforilação , Reação em Cadeia da Polimerase
17.
J Biol Chem ; 285(37): 28912-23, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20605795

RESUMO

The increased risk of venous thromboembolism in cancer patients has been attributed to enhanced tissue factor (TF) procoagulant activity (PCA) on the surface of cancer cells. Recent studies have shown that TF PCA can be modulated by GRP78, an endoplasmic reticulum (ER)-resident molecular chaperone. In this study, we investigated the role of cell surface GRP78 in modulating TF PCA in several human cancer cell lines. Although both GRP78 and TF are present on the cell surface of cancer cells, there was no evidence of a stable interaction between recombinant human GRP78 and TF, nor was there any effect of exogenously added recombinant GRP78 on cell surface TF PCA. Treatment of cells with the ER stress-inducing agent thapsigargin, an inhibitor of the sarco(endo)plasmic reticulum Ca(2+) pump that causes Ca(2+) efflux from ER stores, increased cytosolic [Ca(2+)] and induced TF PCA. Consistent with these findings, anti-GRP78 autoantibodies that were isolated from the serum of patients with prostate cancer and bind to a specific N-terminal epitope (Leu(98)-Leu(115)) on cell surface GRP78, caused a dose-dependent increase in cytosolic [Ca(2+)] and enhanced TF PCA. The ability to interfere with cell surface GRP78 binding, block phospholipase C activity, sequester ER Ca(2+), or prevent plasma membrane phosphatidylserine exposure resulted in a significant decrease in the TF PCA induced by anti-GRP78 autoantibodies. Taken together, these findings provide evidence that engagement of the anti-GRP78 autoantibodies with cell surface GRP78 increases TF PCA through a mechanism that involves the release of Ca(2+) from ER stores. Furthermore, blocking GRP78 signaling on the surface of cancer cells attenuates TF PCA and has the potential to reduce the risk of cancer-related venous thromboembolism.


Assuntos
Anticorpos Antineoplásicos/imunologia , Autoanticorpos/imunologia , Cálcio/imunologia , Retículo Endoplasmático/imunologia , Proteínas de Choque Térmico/imunologia , Neoplasias da Próstata/imunologia , Tromboplastina/imunologia , Tromboembolia Venosa/imunologia , Anticorpos Antineoplásicos/metabolismo , Anticorpos Antineoplásicos/farmacologia , Autoanticorpos/metabolismo , Autoanticorpos/farmacologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Inibidores Enzimáticos/farmacologia , Epitopos/imunologia , Epitopos/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Fosfatidilserinas/imunologia , Fosfatidilserinas/metabolismo , Neoplasias da Próstata/complicações , Neoplasias da Próstata/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/imunologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Tapsigargina/farmacologia , Tromboplastina/metabolismo , Fosfolipases Tipo C/imunologia , Fosfolipases Tipo C/metabolismo , Tromboembolia Venosa/etiologia , Tromboembolia Venosa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA