Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
ACS Appl Mater Interfaces ; 16(8): 9680-9689, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38364813

RESUMO

Nitric oxide (NO) generated within the tumor microenvironment is an established driver of cancer progression and metastasis. Recent efforts have focused on leveraging this feature to target cancer through the development of diagnostic imaging agents and activatable chemotherapeutics. In this context, porphyrins represent an extraordinarily promising class of molecules, owing to their demonstrated use within both modalities. However, the remodeling of a standard porphyrin to afford a responsive chemical that can distinguish elevated NO from physiological levels has remained a significant research challenge. In this study, we employed a photoinduced electron transfer strategy to develop a panel of NO-activatable porphyrin photosensitizers (NOxPorfins) augmented with real-time fluorescence monitoring capabilities. The lead compound, NOxPorfin-1, features an o-phenylenediamine trigger that can effectively capture NO (via N2O3) to yield a triazole product that exhibits a 7.5-fold enhancement and a 70-fold turn-on response in the singlet oxygen quantum yield and fluorescence signal, respectively. Beyond demonstrating excellent in vitro responsiveness and selectivity toward NO, we showcase the potent photodynamic therapy (PDT) effect of NOxPorfin-1 in murine breast cancer and human non-small cellular lung cancer cells. Further, to highlight the in vivo efficacy, two key studies were executed. First, we utilized NOxPorfin-1 to ablate murine breast tumors in a site-selective manner without causing substantial collateral damage to healthy tissue. Second, we established a nascent human lung cancer model to demonstrate the unprecedented ability of NOxPorfin-1 to halt tumor growth and progression completely. The results of the latter study have tremendous implications for applying PDT to target metastatic lesions.


Assuntos
Neoplasias Pulmonares , Fotoquimioterapia , Porfirinas , Humanos , Animais , Camundongos , Óxido Nítrico , Porfirinas/farmacologia , Porfirinas/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
2.
J Mater Chem B ; 12(5): 1149-1167, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38196348

RESUMO

Butyrylcholinesterase (BChE), a member of the human serine hydrolase family, is an essential enzyme for cholinergic neurotransmission as it catalyzes the hydrolysis of acetylcholine. It also plays central roles in apoptosis, lipid metabolism, and xenobiotic detoxification. On the other side, abnormal levels of BChE are directly associated with the formation of pathogenic states such as neurodegenerative diseases, psychiatric and cardiovascular disorders, liver damage, diabetes, and cancer. Thus, selective and sensitive detection of BChE level in living organisms is highly crucial and is of great importance to further understand the roles of BChE in both physiological and pathological processes. However, it is a very complicated task due to the potential interference of acetylcholinesterase (AChE), the other human cholinesterase, as these two enzymes share a very similar substrate scope. To this end, optical imaging probes have attracted immense attention in recent years as they have modular structures, which can be tuned precisely to satisfy high selectivity toward BChE, and at the same time they offer real time and nondestructive imaging opportunities with a high spatial and temporal resolution. Here, we summarize BChE selective imaging probes by discussing the critical milestones achieved during the development process of these molecular sensors over the years. We put a special emphasis on design principles and biological applications of highly promising new generation activity-based probes. We also give a comprehensive outlook for the future of BChE-responsive probes and highlight the ongoing challenges. This collection marks the first review article on BChE-responsive imaging agents.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Humanos , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Acetilcolina/metabolismo , Imagem Óptica
3.
Proc Natl Acad Sci U S A ; 120(36): e2302342120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639589

RESUMO

Inhibition of overexpressed enzymes is among the most promising approaches for targeted cancer treatment. However, many cancer-expressed enzymes are "nonlethal," in that the inhibition of the enzymes' activity is insufficient to kill cancer cells. Conventional antibody-based therapeutics can mediate efficient treatment by targeting extracellular nonlethal targets but can hardly target intracellular enzymes. Herein, we report a cancer targeting and treatment strategy to utilize intracellular nonlethal enzymes through a combination of selective cancer stem-like cell (CSC) labeling and Click chemistry-mediated drug delivery. A de novo designed compound, AAMCHO [N-(3,4,6-triacetyl- N-azidoacetylmannosamine)-cis-2-ethyl-3-formylacrylamideglycoside], selectively labeled cancer CSCs in vitro and in vivo through enzymatic oxidation by intracellular aldehyde dehydrogenase 1A1. Notably, azide labeling is more efficient in identifying tumorigenic cell populations than endogenous markers such as CD44. A dibenzocyclooctyne (DBCO)-toxin conjugate, DBCO-MMAE (Monomethylauristatin E), could next target the labeled CSCs in vivo via bioorthogonal Click reaction to achieve excellent anticancer efficacy against a series of tumor models, including orthotopic xenograft, drug-resistant tumor, and lung metastasis with low toxicity. A 5/7 complete remission was observed after single-cycle treatment of an advanced triple-negative breast cancer xenograft (~500 mm3).


Assuntos
Aldeído Desidrogenase , Anticorpos , Humanos , Azidas , Carcinogênese , Química Click , Família Aldeído Desidrogenase 1 , Retinal Desidrogenase
4.
ACS Bio Med Chem Au ; 3(3): 223-232, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37363076

RESUMO

The earliest activity-based photoacoustic (PA) probes were developed as diagnostic agents for cancer. Since this seminal work over a decade ago that specifically targeted matrix metalloproteinase-2, PA instrumentation, dye platforms, and probe designs have advanced considerably, allowing for the detection of an impressive list of cancer types. However, beyond imaging for oncology purposes, the ability to selectively visualize a given disease biomarker, which can range from aberrant enzymatic activity to the overproduction of reactive small molecules, is also being exploited to study a myriad of noncancerous disease states. In this review, we have assembled a collection of recent papers to highlight the design principles that enable activity-based sensing via PA imaging with respect to biomarker identification and strategies to trigger probe activation under specific conditions.

5.
J Vis Exp ; (193)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37067271

RESUMO

Relapse after cancer treatment is often attributed to the persistence of a subpopulation of tumor cells known as cancer stem cells (CSCs), which are characterized by their remarkable tumor-initiating and self-renewal capacity. Depending on the origin of the tumor (e.g., ovaries), the CSC surface biomarker profile can vary dramatically, making the identification of such cells via immunohistochemical staining a challenging endeavor. On the contrary, aldehyde dehydrogenase 1A1 (ALDH1A1) has emerged as an excellent marker to identify CSCs, owing to its conserved expression profile in nearly all progenitor cells including CSCs. The ALDH1A1 isoform belongs to a superfamily of 19 enzymes that are responsible for the oxidation of various endogenous and xenobiotic aldehydes to the corresponding carboxylic acid products. Chan et al. recently developed AlDeSense, an isoform-selective "turn-on" probe for the detection of ALDH1A1 activity, as well as a non-reactive matching control reagent (Ctrl-AlDeSense) to account for off-target staining. This isoform-selective tool has already been demonstrated to be a versatile chemical tool through the detection of ALDH1A1 activity in K562 myelogenous leukemia cells, mammospheres, and melanoma-derived CSC xenografts. In this article, the utility of the probe was showcased through additional fluorimetry, confocal microscopy, and flow cytometry experiments where the relative ALDH1A1 activity was determined in a panel of five ovarian cancer cell lines.


Assuntos
Aldeído Desidrogenase , Neoplasias Ovarianas , Humanos , Feminino , Família Aldeído Desidrogenase 1/metabolismo , Retinal Desidrogenase/metabolismo , Linhagem Celular Tumoral , Aldeído Desidrogenase/metabolismo , Neoplasias Ovarianas/patologia , Células-Tronco Neoplásicas/patologia
6.
J Am Chem Soc ; 145(13): 7313-7322, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36973171

RESUMO

The attachment of glucose to drugs and imaging agents enables cancer cell targeting via interactions with GLUT1 overexpressed on the cell surface. While an added benefit of this modification is the solubilizing effect of carbohydrates, in the context of imaging agents, aqueous solubility does not guarantee decreased π-stacking or aggregation. The resulting broadening of the absorbance spectrum is a detriment to photoacoustic (PA) imaging since the signal intensity, accuracy, and image quality all rely on reliable spectral unmixing. To address this major limitation and further enhance the tumor-targeting ability of imaging agents, we have taken a biomimetic approach to design a multivalent glucose moiety (mvGlu). We showcase the utility of this new group by developing aza-BODIPY-based contrast agents boasting a significant PA signal enhancement greater than 11-fold after spectral unmixing. Moreover, when applied to targeting cancer cells, effective staining could be achieved with ultra-low dye concentrations (50 nM) and compared to a non-targeted analogue, the signal intensity was >1000-fold higher. Lastly, we employed the mvGlu technology to develop a logic-gated acoustogenic probe to detect intratumoral copper (i.e., Cu(I)), which is an emerging cancer biomarker, in a murine model of breast cancer. This exciting application was not possible using other acoustogenic probes previously developed for copper sensing.


Assuntos
Neoplasias , Técnicas Fotoacústicas , Humanos , Animais , Camundongos , Cobre , Biomimética , Corantes Fluorescentes , Análise Espectral , Técnicas Fotoacústicas/métodos
7.
Comp Med ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922006

RESUMO

Intrapleural injections can be used in mice to deliver therapeutic and diagnostic agents and to model human disease processes (for example, pleural fluid accumulation, malignant pleural disease, and lung cancers). In the context of establishing cancer models, minimally invasive methods of intrapleural injection are desirable because inflammation at the injection site can have a major impact on tumor growth and progression. Common approaches for intrapleural injection include surgical exposure of the thoracic wall or the diaphragm prior to injection; however, these invasive procedures require tissue dissection that triggers an undesirable inflammatory response and increases the risk of pneumothorax. While nonsurgical procedures can minimize this concern, 'blind' injections may lead to off target inoculation. In this study, we hypothesized that a minimally invasive transthoracic approach (MI-TT) would produce a tumor distribution and burden similar to that of a surgical transabdominal approach (SX-TA). Prior to performing the procedures on live mice, surgeons were trained using cadavers and terminal procedures. Then a total of 14 nude mice (female, 4 to 6 wk old) were injected with 50 µL (5 million) A549-Luc2 human cancer cells either using the MI-TT (n = 8) or SX-TA (n = 6) approach under carprofen analgesia and isoflurane anesthesia. Our results indicate that with training, a minimally invasive transthoracic approach for intrapleural injection provides more consistent tumor placement and a greater tumor burden than does the surgical method. However, additional studies are necessary to confirm anatomic placement and characterize tumor profiles.

8.
J Am Chem Soc ; 145(2): 1460-1469, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36603103

RESUMO

Activity-based sensing (ABS) probes equipped with a NIR bioluminescence readout are promising chemical tools to study cancer biomarkers owing to their high sensitivity and deep tissue compatibility. Despite the demand, there is a dearth of such probes because NIR substrates (e.g., BL660 (a NIR luciferin analog)) are not equipped with an appropriate attachment site for ABS trigger installation. For instance, our attempts to mask the carboxylic acid moiety with standard self-immolative benzyl linkers resulted in significant background signals owing to undesirable ester hydrolysis. In this study, we overcame this longstanding challenge by rationally designing a new hydrolysis-resistant ester-based linker featuring an isopropyl shielding arm. Compared to the parent, the new design is 140.5-fold and 67.8-fold more resistant toward spontaneous and esterase-mediated hydrolysis, respectively. Likewise, we observed minimal cleavage of the ester moiety when incubated with a panel of enzymes possessing ester-hydrolyzing activity. These impressive in vitro results were corroborated through a series of key experiments in live cells. Further, we showcased the utility of this technology by developing the first NIR bioluminescent probe for nitroreductase (NTR) activity and applied it to visualize elevated NTR expression in oxygen deficient lung cancer cells and in a murine model of non-small cell lung cancer. The ability to monitor the activity of this key biomarker in a deep tissue context is critical because it is associated with tumor hypoxia, which in turn is linked to drug resistance and aggressive cancer phenotypes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Hidrólise , Ésteres , Corantes Fluorescentes
9.
Org Lett ; 24(46): 8509-8513, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36374323

RESUMO

SWIR dyes offer many advantages over their more common NIR congeners; however, the available options are limited. New SWIR imaging agents can be accessed by remodeling existing NIR molecules (i.e., hemicyanines (HDs)). In this study, we synthesized SWIR-HD, a modified HD featuring dimethylsilicon and benzo[cd]indolium groups that are designed to red-shift the absorbance and emission to 988 and 1126 nm, respectively. SWIR-HD was employed to visualize the liver and tumors via multimodal SWIR imaging.


Assuntos
Silício
10.
J Am Chem Soc ; 144(39): 18101-18108, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36153991

RESUMO

The favorable properties of cyanines (e.g., near-infrared (NIR) absorbance and emission) have made this class of dyes popular for a wide variety of biomedical applications. However, many cyanines are prone to rapid photobleaching when irradiated with light. In this study, we have exploited this undesirable trait to develop NIR-nanogels for NIR light-mediated cargo delivery. NIR-nanogels feature a photolabile cyanine cross-linker (Cy780-Acryl) that can cleave via dioxetane chemistry when irradiated. This photochemical process results in the formation of two carbonyl fragments and concomitant NIR-nanogel degradation to facilitate cargo release. In contrast to studies where cyanines are utilized as photocages, our approach does not require direct chemical attachment to the cargo, thus expanding our ability to deliver molecules that cannot be covalently modified. We showcase this feature by encapsulating a palette of small-molecule chemotherapeutics that feature a structurally diverse chemical architecture. To demonstrate site-selective release in vivo, we generated a murine model of breast cancer. Relative to nonlight irradiated and drug-free controls, treatment with NIR-nanogels loaded with paclitaxel (a potent cytotoxic agent) and NIR light resulted in significant attenuation of tumor growth. Moreover, we show via histological staining of the vital organs that minimal off-target effects are observed.


Assuntos
Reposicionamento de Medicamentos , Paclitaxel , Animais , Corantes , Citotoxinas , Camundongos , Nanogéis , Paclitaxel/farmacologia
11.
Angew Chem Int Ed Engl ; 61(44): e202211774, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36083191

RESUMO

Obesity is a chronic health condition characterized by the accumulation of excessive body fat which can lead to and exacerbate cardiovascular disease, type-II diabetes, high blood pressure, and cancer through systemic inflammation. Unfortunately, visualizing key mediators of the inflammatory response, such as monoacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH), in a selective manner is a profound challenge owing to an overlapping substrate scope that involves arachidonic acid (AA). Specifically, these enzymes work in concert to generate AA, which in the context of obesity, has been implicated to control appetite and energy metabolism. In this study, we developed the first selective activity-based sensing probes to detect MGL (PA-HD-MGL) and FAAH (PA-HD-FAAH) activity via photoacoustic imaging. Activation of PA-HD-MGL and PA-HD-FAAH by their target enzymes resulted in 1.74-fold and 1.59-fold signal enhancements, respectively. Due to their exceptional selectivity profiles and deep-tissue photoacoustic imaging capabilities, these probes were employed to measure MGL and FAAH activity in a murine model of obesity. Contrary to conflicting reports suggesting levels of MGL can be attenuated or elevated, our results support the latter. Indeed, we discovered a marked increase of both targets in the gastrointestinal tract. These key findings set the stage to uncover the role of the endocannabinoid pathway in obesity-mediated inflammation.


Assuntos
Endocanabinoides , Monoacilglicerol Lipases , Animais , Camundongos , Humanos , Monoacilglicerol Lipases/química , Monoacilglicerol Lipases/metabolismo , Ácido Araquidônico , Modelos Animais de Doenças , Amidoidrolases/metabolismo , Obesidade/diagnóstico por imagem , Inflamação
12.
ACS Cent Sci ; 8(4): 461-472, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35505872

RESUMO

Nitric oxide (NO) plays a critical role in acute and chronic inflammation. NO's contributions to cancer are of particular interest due to its context-dependent bioactivities. For example, immune cells initially produce cytotoxic quantities of NO in response to the nascent tumor. However, it is believed that this fades over time and reaches a concentration that supports the tumor microenvironment (TME). These complex dynamics are further complicated by other factors, such as diet and oxygenation, making it challenging to establish a complete picture of NO's impact on tumor progression. Although many activity-based sensing (ABS) probes for NO have been developed, only a small fraction have been employed in vivo, and fewer yet are practical in cancer models where the NO concentration is <200 nM. To overcome this outstanding challenge, we have developed BL660-NO, the first ABS probe for NIR bioluminescence imaging of NO in cancer. Owing to the low intrinsic background, high sensitivity, and deep tissue imaging capabilities of our design, BL660-NO was successfully employed to visualize endogenous NO in cellular systems, a human liver metastasis model, and a murine breast cancer model. Importantly, its exceptional performance facilitated two dietary studies which examine the impact of fat intake on NO and the TME. BL660-NO provides the first direct molecular evidence that intratumoral NO becomes elevated in mice fed a high-fat diet, which became obese with larger tumors, compared to control animals on a low-fat diet. These results indicate that an inflammatory diet can increase NO production via recruitment of macrophages and overexpression of inducible nitric oxide synthase which in turn can drive tumor progression.

13.
Chem Soc Rev ; 51(3): 829-868, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35094040

RESUMO

Photoacoustic (PA) imaging has emerged as a powerful technique for the high resolution visualization of biological processes within deep tissue. Through the development and application of exogenous targeted contrast agents and activatable probes that can respond to a given cancer biomarker, researchers can image molecular events in vivo during cancer progression. This information can provide valuable details that can facilitate cancer diagnosis and therapy monitoring. In this tutorial review, we provide a step-by-step guide to select a cancer biomarker and subsequent approaches to design imaging agents for in vivo use. We envision this information will be a useful summary to those in the field, new members to the community, and graduate students taking advanced imaging coursework. We also highlight notable examples from the recent literature, with emphasis on the molecular designs and their in vivo PA imaging performance. To conclude, we provide our outlook and future perspective in this exciting field.


Assuntos
Neoplasias , Técnicas Fotoacústicas , Meios de Contraste , Humanos , Imagem Molecular , Sondas Moleculares , Neoplasias/diagnóstico por imagem
14.
Nat Chem ; 13(12): 1248-1256, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34697400

RESUMO

Companion diagnostics (CDx) are powerful tests that can provide physicians with crucial biomarker information that can improve treatment outcomes by matching therapies to patients. Here, we report a photoacoustic imaging-based CDx (PACDx) for the selective detection of elevated glutathione (GSH) in a lung cancer model. GSH is abundant in most cells, so we adopted a physical organic chemistry approach to precisely tune the reactivity to distinguish between normal and pathological states. To evaluate the efficacy of PACDx in vivo, we designed a blind study where photoacoustic imaging was used to identify mice bearing lung xenografts. We also employed PACDx in orthotopic lung cancer and liver metastasis models to image GSH. In addition, we designed a matching prodrug, PARx, that uses the same SNAr chemistry to release a chemotherapeutic with an integrated PA readout. Studies demonstrate that PARx can inhibit tumour growth without off-target toxicity in a lung cancer xenograft model.


Assuntos
Sulfonatos de Arila/química , Biomarcadores Tumorais/metabolismo , Corantes/química , Glutationa/metabolismo , Indóis/química , Neoplasias Pulmonares/tratamento farmacológico , Animais , Sulfonatos de Arila/síntese química , Sulfonatos de Arila/efeitos da radiação , Linhagem Celular Tumoral , Corantes/síntese química , Corantes/efeitos da radiação , Desoxicitidina/análogos & derivados , Desoxicitidina/síntese química , Desoxicitidina/efeitos da radiação , Desoxicitidina/uso terapêutico , Desenho de Fármacos , Feminino , Células HEK293 , Humanos , Indóis/síntese química , Indóis/efeitos da radiação , Luz , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Técnicas Fotoacústicas/métodos , Pró-Fármacos/síntese química , Pró-Fármacos/efeitos da radiação , Pró-Fármacos/uso terapêutico , Método Simples-Cego , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
15.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34480005

RESUMO

The development of high-performance photoacoustic (PA) probes that can monitor disease biomarkers in deep tissue has the potential to replace invasive medical procedures such as a biopsy. However, such probes must be optimized for in vivo performance and exhibit an exceptional safety profile. In this study, we have developed PACu-1, a PA probe designed for biopsy-free assessment (BFA) of hepatic Cu via photoacoustic imaging. PACu-1 features a Cu(I)-responsive trigger appended to an aza-BODIPY dye platform that has been optimized for ratiometric sensing. Owing to its excellent performance, we were able to detect basal levels of Cu in healthy wild-type mice as well as elevated Cu in a Wilson's disease model and in a liver metastasis model. To showcase the potential impact of PACu-1 for BFA, we conducted two blind studies in which we were able to successfully identify Wilson's disease animals from healthy control mice in each instance.


Assuntos
Cobre/metabolismo , Degeneração Hepatolenticular/metabolismo , Neoplasias Hepáticas/secundário , Técnicas Fotoacústicas/instrumentação , Animais , Biópsia , Modelos Animais de Doenças , Degeneração Hepatolenticular/patologia , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Tecidual
16.
Angew Chem Int Ed Engl ; 60(34): 18860-18866, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34089556

RESUMO

Most photoacoustic (PA) imaging agents are based on the repurposing of existing fluorescent dye platforms that exhibit non-optimal properties for PA applications. Herein, we introduce PA-HD, a new dye scaffold optimized for PA probe development that features a 4.8-fold increase in sensitivity and a red-shift of the λabs from 690 nm to 745 nm to enable ratiometric imaging. Computational modeling was used to elucidate the origin of these enhanced properties. To demonstrate the generalizability of our remodeling efforts, we developed three probes for ß-galactosidase activity (PA-HD-Gal), nitroreductase activity (PA-HD-NTR), and H2 O2 (PA-HD-H2 O2 ). We generated two cancer models to evaluate PA-HD-Gal and PA-HD-NTR. We employed a murine model of Alzheimer's disease to test PA-HD-H2 O2 . There, we observed a PA signal increase at 735 nm of 1.79±0.20-fold relative to background, indicating the presence of oxidative stress. These results were confirmed via ratiometric calibration, which was not possible using the parent HD platform.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Carbocianinas/química , Corantes Fluorescentes/química , Imagem Óptica , Técnicas Fotoacústicas , Doença de Alzheimer/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Modelos Animais de Doenças , Peróxido de Hidrogênio/química , Camundongos , Estrutura Molecular , Estresse Oxidativo
17.
J Am Chem Soc ; 143(18): 7196-7202, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33905646

RESUMO

Photoacoustic (PA) imaging has emerged as a reliable in vivo technique for diverse biomedical applications ranging from disease screening to analyte sensing. Most contemporary PA imaging agents employ NIR-I light (650-900 nm) to generate an ultrasound signal; however, there is significant interference from endogenous biomolecules such as hemoglobin that are PA active in this window. Transitioning to longer excitation wavelengths (i.e., NIR-II) reduces the background and facilitates the detection of low abundance targets (e.g., nitric oxide, NO). In this study, we employed a two-phase tuning approach to develop APNO-1080, a NIR-II NO-responsive probe for deep-tissue PA imaging. First, we performed Hammett and Brønsted analyses to identify a highly reactive and selective aniline-based trigger that reacts with NO via N-nitrosation chemistry. Next, we screened a panel of NIR-II platforms to identify chemical structures that have a low propensity to aggregate since this can diminish the PA signal. In a head-to-head comparison with a NIR-I analogue, APNO-1080 was 17.7-fold more sensitive in an in vitro tissue phantom assay. To evaluate the deep-tissue imaging capabilities of APNO-1080 in vivo, we performed PA imaging in an orthotopic breast cancer model and a heterotopic lung cancer model. Relative to control mice not bearing tumors, the normalized turn-on response was 1.3 ± 0.12 and 1.65 ± 0.07, respectively.


Assuntos
Desenvolvimento de Medicamentos , Corantes Fluorescentes/química , Óxido Nítrico/análise , Imagem Óptica , Técnicas Fotoacústicas , Células A549 , Animais , Corantes Fluorescentes/síntese química , Humanos , Raios Infravermelhos , Camundongos , Estrutura Molecular , Neoplasias Experimentais/diagnóstico por imagem
18.
Angew Chem Int Ed Engl ; 60(10): 5000-5009, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32274846

RESUMO

Until recently, there were no generalizable methods for assessing the effects of post-translational regulation on enzymatic activity. Activity-based sensing (ABS) has emerged as a powerful approach for monitoring small-molecule and enzyme activities within living systems. Initial examples of ABS were applied for measuring general enzymatic activity; however, a recent focus has been placed on increasing the selectivity to monitor a single enzyme or isoform. The highest degree of selectivity is required for differentiating between isoforms, where the targets display significant structural similarities as a result of a gene duplication or alternative splicing. This Minireview highlights key examples of small-molecule isoform-selective probes with a focus on the relevance of isoform differentiation, design strategies to achieve selectivity, and applications in basic biology or in the clinic.


Assuntos
Ensaios Enzimáticos/métodos , Corantes Fluorescentes/química , Isoenzimas/análise , Animais , Linhagem Celular Tumoral , Corantes Fluorescentes/metabolismo , Humanos , Isoenzimas/metabolismo , Microscopia Confocal , Microscopia de Fluorescência
19.
Curr Opin Chem Biol ; 57: 114-121, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32769068

RESUMO

Acoustic-based imaging modalities (e.g. ultrasonography and photoacoustic imaging) have emerged as powerful approaches to noninvasively visualize the interior of the body due to their biocompatibility and the ease of sound transmission in tissue. These technologies have recently been augmented with an array of chemical tools that enable the study and modulation of the tumor microenvironment at the molecular level. In addition, the application of ultrasound and ultrasound-responsive materials has been used for drug delivery with high spatiotemporal control. In this review, we highlight recent advances (in the last 2-3 years) in acoustic-based chemical tools and technologies suitable for furthering our understanding of molecular events in complex tumor microenvironments.


Assuntos
Neoplasias/patologia , Microambiente Tumoral , Animais , Humanos , Imagem Molecular/métodos , Técnicas Fotoacústicas/métodos , Ultrassonografia/métodos
20.
Theranostics ; 10(4): 1733-1745, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32042333

RESUMO

Background: Peripheral arterial disease (PAD) is a major worldwide health concern. Since the late 1990s therapeutic angiogenesis has been investigated as an alternative to traditional PAD treatments. Although positive preclinical results abound in the literature, the outcomes of human clinical trials have been discouraging. Among the challenges the field has faced has been a lack of standardization of the timings and measures used to validate new treatment approaches. Methods: In order to study the spatiotemporal dynamics of both perfusion and neovascularization in mice subjected to surgically-induced hindlimb ischemia (n= 30), we employed three label-free imaging modalities (a novel high-sensitivity ultrasonic Power Doppler methodology, laser speckle contrast, and photoacoustic imaging), as well as a tandem of radio-labeled molecular probes, 99mTc-NC100692 and 99mTc-BRU-5921 respectively, designed to detect two key modulators of angiogenic activity, αVß3 and HIF-1α , via scintigraphic imaging. Results: The multimodal imaging strategy reveals a set of "landmarks"-key physiological and molecular events in the healing process-that can serve as a standardized framework for describing the impact of emerging PAD treatments. These landmarks span the entire process of neovascularization, beginning with the rapid decreases in perfusion and oxygenation associated with ligation surgery, extending through pro-angiogenic changes in gene expression driven by the master regulator HIF-1α , and ultimately leading to complete functional revascularization of the affected tissues. Conclusions: This study represents an important step in the development of multimodal non-invasive imaging strategies for vascular research; the combined results offer more insight than can be gleaned through any of the individual imaging methods alone. Researchers adopting similar imaging strategies and will be better able to describe changes in the onset, duration, and strength of each of the landmarks of vascular recovery, yielding greater biological insight, and enabling more comprehensive cross-study comparisons. Perhaps most important, this study paves the road for more efficient translation of PAD research; emerging experimental treatments can be more effectively assessed and refined at the preclinical stage, ultimately leading to better next-generation therapies.


Assuntos
Membro Posterior/irrigação sanguínea , Isquemia/fisiopatologia , Imagem Multimodal/métodos , Doença Arterial Periférica/terapia , Indutores da Angiogênese/metabolismo , Animais , Modelos Animais de Doenças , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imidazóis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/genética , Compostos de Organotecnécio , Peptídeos Cíclicos , Imagem de Perfusão/métodos , Doença Arterial Periférica/diagnóstico por imagem , Técnicas Fotoacústicas/métodos , Cintilografia/métodos , Recuperação de Função Fisiológica , Ultrassonografia Doppler/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA