Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Stimul ; 15(3): 843-856, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35640844

RESUMO

BACKGROUND: Given that visual impairment is bi-directionally associated with depression, we examined whether transcorneal electrical stimulation (TES), a non-invasive treatment for visual disorders, can ameliorate depressive symptoms. OBJECTIVE: The putative antidepressant-like effects of TES and the underlying mechanisms were investigated in an S334ter-line-3 rat model of retinal degeneration and a rat model of chronic unpredictable stress (CUS). METHODS: TES was administered daily for 1 week in S334ter-line-3 and CUS rats. The effects of TES on behavioral parameters, plasma corticosterone levels, and different aspects of neuroplasticity, including neurogenesis, synaptic plasticity, and apoptosis, were examined. RESULTS: In S334ter-line-3 rats, TES induced anxiolytic and antidepressant-like behaviors in the cylinder, open field, home cage emergence, and forced swim tests. In the CUS rat model, TES induced hedonic-like behavior and decreased behavioral despair, which were accompanied by reduced plasma corticosterone levels and upregulated expression of neurogenesis-related genes. Treatment with the neurogenesis blocker temozolomide only inhibited the hedonic-like effect of TES, suggesting the antidepressant-like effects of TES were mediated through both neurogenesis-dependent and -independent mechanisms. Furthermore, TES was found to normalize the protein expression of synaptic markers and apoptotic Bcl-2-associated X protein in the hippocampus and amygdala in the CUS rat model. The improvements in neuroplasticity may involve protein kinase B (AKT) and protein kinase A (PKA) signaling pathways in the hippocampus and amygdala, respectively, as demonstrated by the altered pAKT/AKT and pPKA/PKA ratios. CONCLUSION: The overall findings suggest a possible neuroplasticity mechanism of the antidepressant-like effects of TES.


Assuntos
Corticosterona , Proteínas Proto-Oncogênicas c-akt , Animais , Antidepressivos/farmacologia , Corticosterona/metabolismo , Corticosterona/farmacologia , Depressão/metabolismo , Depressão/terapia , Modelos Animais de Doenças , Estimulação Elétrica , Hipocampo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/complicações , Estresse Psicológico/terapia
2.
ACS Appl Mater Interfaces ; 12(26): 28928-28940, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432847

RESUMO

The development of biocompatible drug delivery vehicles for cancer therapy in the brain remains a big challenge. In this study, we designed self-assembled DNA nanocages functionalized with or without blood-brain barrier (BBB)-targeting ligands, d and we investigated their penetration across the BBB. Our DNA nanocages were not cytotoxic and they were substantially taken up in brain capillary endothelial cells and Uppsala 87 malignant glioma (U-87 MG) cells. We found that ligand modification is not essential for this DNA system as the ligand-free DNA nanocages (LF-NCs) could still cross the BBB by endocytosis inin vitro and in vivo models. Our spherical DNA nanocages were more permeable across the BBB compared with tubular DNA nanotubes. Remarkably, in vivo studies revealed that DNA nanocages could carry anticancer drugs across the BBB and inhibit the tumor growth in a U-87 MG xenograft mouse model. This is the first example showing the potential of DNA nanocages as innovative delivery vehicles to the brain for cancer therapy. Unlike other delivery systems, our work suggest that a DNA nanocage-based platform provides a safe and cost-effective tool for targeted delivery to the brain and therapy for brain tumors.


Assuntos
Antineoplásicos/uso terapêutico , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Glioma/metabolismo , Animais , Antineoplásicos/química , Barreira Hematoencefálica/efeitos dos fármacos , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Glioblastoma/tratamento farmacológico , Glioma/tratamento farmacológico , Humanos , Camundongos , Nanotubos/química , Ensaios Antitumorais Modelo de Xenoenxerto
3.
IEEE Trans Neural Syst Rehabil Eng ; 25(9): 1605-1611, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28320674

RESUMO

Millions of people around the world suffer from varying degrees of vision loss (including complete blindness) because of retinal degenerative diseases. Artificial retinal prosthesis, which is usually based on electrical neurostimulation, is the most advanced technology for different types of retinal degeneration. However, this technology involves placing a device into the eyeball, and such a highly invasive procedure is inevitably highly risk and expensive. Ultrasound has been demonstrated to be a promising technology for noninvasive neurostimulation, making it possible to stimulate the retina and induce action potentials similar to those elicited by light stimulation. However, the technology of ultrasound retinal stimulation still requires considerable developments before it could be applied clinically. This paper proposes a novel contact-lens array transducer for use in an ultrasound retinal prosthesis (USRP). The transducer was designed in the shape of a contact lens so as to facilitate acoustic coupling with the eye liquid. The key parameters of the ultrasound transducer were simulated, and results are presented that indicate the achievement of 2-D pattern generation and that the proposed contact-lens array is suitable for multiple-focus neurostimulation, and can be used in a USRP.


Assuntos
Lentes de Contato , Terapia por Estimulação Elétrica/instrumentação , Neuroestimuladores Implantáveis , Retina/fisiologia , Transdutores , Terapia por Ultrassom/instrumentação , Próteses Visuais , Simulação por Computador , Desenho Assistido por Computador , Terapia por Estimulação Elétrica/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Modelos Teóricos , Doses de Radiação , Reprodutibilidade dos Testes , Retina/efeitos da radiação , Espalhamento de Radiação , Sensibilidade e Especificidade , Terapia por Ultrassom/métodos , Ondas Ultrassônicas
4.
Mol Neurobiol ; 54(7): 5590-5603, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27613284

RESUMO

Ciguatera fish poisoning (CFP) is a common human food poisoning caused by consumption of ciguatoxin (CTX)-contaminated fish affecting over 50,000 people worldwide each year. CTXs are classified depending on their origin from the Pacific (P-CTXs), Indian Ocean (I-CTXs), and Caribbean (C-CTXs). P-CTX-1 is the most toxic CTX known and the major source of CFP causing an array of neurological symptoms. Neurological symptoms in some CFP patients last for several months or years; however, the underlying electrophysiological properties of acute exposure to CTXs remain unknown. Here, we used CTX purified from ciguatera fish sourced in the Pacific Ocean (P-CTX-1). Delta and theta electroencephalography (EEG) activity was reduced remarkably in 2 h and returned to normal in 6 h after a single exposure. However, second exposure to P-CTX-1 induced not only a further reduction in EEG activities but also a 2-week delay in returning to baseline EEG values. Ciguatoxicity was detected in the brain hours after the first and second exposure by mouse neuroblastoma assay. The spontaneous firing rate of single motor cortex neuron was reduced significantly measured by single-unit recording with high spatial resolution. Expression profile study of neurotransmitters using targeted profiling approach based on liquid chromatography-tandem mass spectrometry revealed an imbalance between excitatory and inhibitory neurotransmitters in the motor cortex. Our study provides a possible link between the brain oscillations and neurotransmitter release after acute exposure to P-CTX-1. Identification of EEG signatures and major metabolic pathways affected by P-CTX-1 provides new insight into potential biomarker development and therapeutic interventions.


Assuntos
Ciguatoxinas/toxicidade , Eletroencefalografia/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Córtex Motor/efeitos dos fármacos , Neurotransmissores/metabolismo , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Ciguatera/metabolismo , Peixes , Masculino , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA