Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Fluoresc ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294633

RESUMO

Apoptosis is the programmed cell death pathway that is critical for maintaining homeostasis, in which cancer cells can evade to ensure survival. For pharmaceutical drug discovery, it is important to characterize and compare different cancer therapeutics (i.e., small molecules, antibody drugs, cell therapies) that can initiate the process of apoptosis, enabling the identification of potential therapeutic candidates. In this work, we developed and demonstrated a multiplex detection method for monitoring apoptosis and necrosis with Annexin V, Caspase-3, and Propidium Iodide (PI) using the Cellaca® PLX Image Cytometer (Revvity Health Sciences, Inc., Lawrence, MA). First, apoptosis was induced in Jurkat and K562 cell lines with staurosporine over the course of 24 h, where apoptosis and necrosis were assessed at 0, 1, 1.5, 2, 4, 20, and 24 h timepoints. Samples were stained with Hoechst 33342 (total dye), Annexin V-APC (early-stage apoptosis), Caspase-3 488 (late-stage apoptosis), and PI (necrosis) at each timepoint and evaluated using image cytometry. Results showed that apoptotic factors and cascades were successfully detected along the pathway from early- to late-stage apoptosis, and ultimately necrosis. A clear trend was observed analyzing apoptotic and necrotic populations during the first 1.5 h, showing differences of up to ~15% in single Annexin V+ and Caspase-3+ populations in treated Jurkat cells, however, a significant increase in double positive apoptotic/necrotic cells for Annexin V+PI+ and Capase-3+PI+ was not observed until 20 h. Upon further analysis between apoptotic populations only, Annexin V+ only populations were higher than Caspase-3+ only populations by up to ~20% between 0 and 1.5 h. Conversely, K562 cells did not exhibit a notable change in apoptotic and necrotic populations due to low sensitivity to staurosporine. The proposed image cytometric detection method may provide an effective and efficient tool for rapid and reliable simultaneous detection of early- late-stage apoptosis, and necrosis. Therefore, allowing researchers to better characterize and screen potential cancer therapeutic drug candidates for their treatment efficacy in a higher throughput manner.

2.
J Immunol Methods ; 524: 113587, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040192

RESUMO

Immunophenotyping has been the primary assay for characterization of immune cells from patients undergoing therapeutic treatments in clinical research, which is critical for understanding disease progression and treatment efficacy. Currently, flow cytometry has been the dominant methodology for characterizing surface marker expression for immunological research. Flow cytometry has been proven to be an effective and efficient method for immunophenotyping, however, it requires highly trained users and a large time commitment. Recently, a novel image cytometry system (Cellaca® PLX Image Cytometer, Revvity Health Sciences, Inc., Lawrence, MA) has been developed as a complementary method to flow cytometry for performing rapid and high-throughput immunophenotyping. In this work, we demonstrated an image cytometric screening method to characterize immune cell populations, streamlining the analysis of routine surface marker panels. The T cell, B cell, NK cell, and monocyte populations of 46 primary PBMC samples from subjects enrolled in autoimmune and oncological disease study cohorts were analyzed with two optimized immunophenotyping staining kits: Panel 1 (CD3, CD56, CD14) and Panel 2 (CD3, CD56, CD19). We validated the proposed image cytometry method by comparing the Cellaca® PLX and the AuroraTM flow cytometer (Cytek Biosciences, Fremont, CA). The image cytometry system was employed to generate bright field and fluorescent images, as well as scatter plots for multiple patient PBMC samples. In addition, the image cytometry method can directly determine cell concentrations for downstream assays. The results demonstrated comparable CD3, CD14, CD19, and CD56 cell populations from the primary PBMC samples, which showed an average of 5% differences between flow and image cytometry. The proposed image cytometry method provides a novel research tool to potentially streamline immunophenotyping workflow for characterizing patient samples in clinical studies.


Assuntos
Leucócitos Mononucleares , Linfócitos T , Humanos , Imunofenotipagem , Células Matadoras Naturais , Citometria de Fluxo/métodos , Antígenos CD19 , Citometria por Imagem
3.
Anal Biochem ; 685: 115389, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37951455

RESUMO

Cell and gene therapy is a fast-growing field for cancer therapeutics requiring reliable instrumentation and technologies. Key parameters essential for satisfying Chemistry Manufacturing and Controls criteria standards are routinely performed using flow cytometry. Recently, image cytometry was developed for cell characterization and cell-based assays but had not yet demonstrated sufficient sensitivity for surface marker detection. We developed the Cellaca® PLX image cytometry system and the respective methodologies required for immunophenotyping, GFP and RFP transfection/transduction efficiencies, and cell health analyses for routine cell characterization. All samples tested were compared directly to results from the CytoFLEX flow cytometer. PBMCs were stained with T-cell surface markers for immunophenotyping, and results show highly comparable CD3, CD4, and CD8 populations (within 5 %). GFP- or RFP-expressing cell lines were analyzed for transfection/transduction efficiencies, and the percentage positive cells and respective viabilities were equivalent on both systems. Staurosporine-treated Jurkat cells were stained for apoptotic markers, where annexin V and caspase-3 positive cells were within 5 % comparing both instruments. The proposed system may provide a complementary tool for performing routine cell-based experiments with improved efficiency and sensitivity compared to prior image cytometers, which may be significantly valuable to the cell and gene therapy field.


Assuntos
Apoptose , Humanos , Imunofenotipagem , Transfecção , Linhagem Celular , Células Jurkat , Citometria de Fluxo/métodos
4.
SLAS Discov ; 28(3): 65-72, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36758833

RESUMO

Solid tumors account for approximately 90% of all adult human cancers. As such, the development of novel cellular therapies has become of increasing importance to target solid tumor malignancies, such as prostate, lung, breast, bladder, colon, and liver cancers. One such cellular therapy relies on the use of chimeric antigen receptor T cells (CAR-T cells). CAR-T cells are engineered to target specific antigens on tumor cells. To date, there are six FDA-approved CAR-T cell therapies that have been utilized for hematologic B cell malignancies. Immune cell trafficking and immunosuppressive factors within the tumor microenvironment increase the relative difficulty in developing a robust CAR-T cell therapy against solid tumors. Therefore, it is critical to develop novel methodologies for high-throughput phenotypic and functional assays using 3D tumor spheroid models to assess CAR-T cell products against solid tumors. In this manuscript, we discuss the use of CAR-T cells targeted towards PSMA, an antigen that is found on prostate cancer tumor cells, the second most common cause of cancer deaths among men worldwide. We demonstrate the use of high-throughput, plate-based image cytometry to characterize CAR-T cell-mediated cytotoxic potency against 3D prostate tumor spheroids. We were able to kinetically evaluate the efficacy and therapeutic value of PSMA CAR-T cells by analyzing the cytotoxicity against prostate tumor spheroids. In addition, the CAR-T cells were fluorescently labeled to visually identify the location of the T cells as cytotoxicity occurs, which may provide more meaningful information for assessing the functionality of the CAR-T cells. The proposed image cytometry method can overcome limitations placed on traditional methodologies to effectively assess cell-mediated 3D tumor spheroid cytotoxicity and efficiently generate time- and dose-dependent results.


Assuntos
Neoplasias da Próstata , Receptores de Antígenos Quiméricos , Masculino , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Linfócitos T/metabolismo , Citometria por Imagem/métodos , Microambiente Tumoral
5.
Cytometry A ; 103(1): 27-38, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35869932

RESUMO

In the recent decade, chimeric antigen receptor (CAR)-T cell therapy has revolutionized strategies for cancer treatments due to its highly effective clinical efficacy and response for B cell malignancies. The success of CAR-T cell therapy has stimulated the increase in the research and development of various CAR constructs to target different tumor types. Therefore, a robust and efficient in vitro potency assay is needed to quickly identify potential CAR gene design from a library of construct candidates. Image cytometry methodologies have been utilized for various CAR-T cell-mediated cytotoxicity assay using different fluorescent labeling methods, mainly due to their ease-of-use, ability to capture cell images for verification, and higher throughput performance. In this work, we employed the Celigo Image Cytometer to evaluate and compare two CAR-T cell-mediated cytotoxicity assays using GFP-expressing or fluorescent dye-labeled myeloma and plasmacytoma cells. The GFP-based method demonstrated higher sensitivity in detecting CAR-T cell-mediated cytotoxicity when compared to the CMFDA/DAPI viability method. We have established the criteria and considerations for the selection of cytotoxicity assays that are fit-for-purpose to ensure the results produced are meaningful for the specific testing conditions.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos
6.
J Clin Invest ; 132(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35775486

RESUMO

Immunosuppressive cells accumulating in the tumor microenvironment constitute a formidable barrier that interferes with current immunotherapeutic approaches. A unifying feature of these tumor-associated immune and vascular endothelial cells appears to be the elevated expression of ectonucleotidase CD39, which in tandem with ecto-5'-nucleotidase CD73, catalyzes the conversion of extracellular ATP into adenosine. We glycoengineered an afucosylated anti-CD39 IgG2c and tested this reagent in mouse melanoma and colorectal tumor models. We identified major biological effects of this approach on cancer growth, associated with depletion of immunosuppressive cells, mediated through enhanced Fcγ receptor-directed (FcγR-directed), antibody-dependent cellular cytotoxicity (ADCC). Furthermore, regulatory/exhausted T cells lost CD39 expression, as a consequence of antibody-mediated trogocytosis. Most strikingly, tumor-associated macrophages and endothelial cells with high CD39 expression were effectively depleted following antibody treatment, thereby blocking angiogenesis. Tumor site-specific cellular modulation and lack of angiogenesis synergized with chemotherapy and anti-PD-L1 immunotherapy in experimental tumor models. We conclude that depleting suppressive cells and targeting tumor vasculature, through administration of afucosylated anti-CD39 antibody and the activation of ADCC, comprises an improved, purinergic system-modulating strategy for cancer therapy.


Assuntos
Apirase , Neoplasias , Animais , Antígenos CD/metabolismo , Células Endoteliais/metabolismo , Camundongos , Neovascularização Patológica/genética , Microambiente Tumoral
7.
J Fluoresc ; 32(2): 521-531, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34989923

RESUMO

Tumor spheroid models have proven useful in the study of cancer cell responses to chemotherapeutic compounds by more closely mimicking the 3-dimensional nature of tumors in situ. Their advantages are often offset, however, by protocols that are long, complicated, and expensive. Efforts continue for the development of high-throughput assays that combine the advantages of 3D models with the convenience and simplicity of traditional 2D monolayer methods. Herein, we describe the development of a breast cancer spheroid image cytometry assay using T47D cells in Aggrewell™400 spheroid plates. Using the Celigo® automated imaging system, we developed a method to image and individually track thousands of spheroids within the Aggrewell™400 microwell plate over time. We demonstrate the use of calcein AM and propidium iodide staining to study the effects of known anti-cancer drugs Doxorubicin, Everolimus, Gemcitabine, Metformin, Paclitaxel and Tamoxifen. We use the image cytometry results to quantify the fluorescence of calcein AM and PI as well as spheroid size in a dose dependent manner for each of the drugs. We observe a dose-dependent reduction in spheroid size and find that it correlates well with the viability obtained from the CellTiter96® endpoint assay. The image cytometry method we demonstrate is a convenient and high-throughput drug-response assay for breast cancer spheroids under 400 µm in diameter, and may lay a foundation for investigating other three-dimensional spheroids, organoids, and tissue samples.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Ensaios de Triagem em Larga Escala/métodos , Citometria por Imagem/métodos , Esferoides Celulares/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Fluoresceínas , Corantes Fluorescentes , Humanos , Propídio
8.
Methods Mol Biol ; 2422: 233-245, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34859410

RESUMO

Mammosphere formation assays are a popular and convenient technique in the study of breast cancer by providing an in vitro mechanism by which to study breast cancer stem cell (BCSC) contribution to tumorigenesis, as well as more closely mimicking the three-dimensional tumor microenvironment. In these assays, BCSCs are stimulated to proliferate in low adherence tissue culture dishes and the resulting mammospheres exhibit activation of stem cell-related signaling pathways. Here we describe the process for generating and analyzing mammospheres under varying conditions.


Assuntos
Neoplasias da Mama , Mama , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Células-Tronco Neoplásicas , Receptores de Estrogênio , Microambiente Tumoral
9.
SLAS Discov ; 26(9): 1079-1090, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34269109

RESUMO

The recent renascence of phenotypic drug discovery (PDD) is catalyzed by its ability to identify first-in-class drugs and deliver results when the exact molecular mechanism is partially obscure. Acute respiratory distress syndrome (ARDS) is a severe, life-threatening condition with a high mortality rate that has increased in frequency due to the COVID-19 pandemic. Despite decades of laboratory and clinical study, no efficient pharmacological therapy for ARDS has been found. An increase in endothelial permeability is the primary event in ARDS onset, causing the development of pulmonary edema that leads to respiratory failure. Currently, the detailed molecular mechanisms regulating endothelial permeability are poorly understood. Therefore, the use of the PDD approach in the search for efficient ARDS treatment can be more productive than classic target-based drug discovery (TDD), but its use requires a new cell-based assay compatible with high-throughput (HTS) and high-content (HCS) screening. Here we report the development of a new plate-based image cytometry method to measure endothelial barrier function. The incorporation of image cytometry in combination with digital image analysis substantially decreases assay variability and increases the signal window. This new method simultaneously allows for rapid measurement of cell monolayer permeability and cytological analysis. The time-course of permeability increase in human pulmonary artery endothelial cells (HPAECs) in response to the thrombin and tumor necrosis factor α treatment correlates with previously published data obtained by transendothelial resistance (TER) measurements. Furthermore, the proposed image cytometry method can be easily adapted for HTS/HCS applications.


Assuntos
COVID-19/diagnóstico por imagem , Ensaios de Triagem em Larga Escala/métodos , Citometria por Imagem/métodos , Síndrome do Desconforto Respiratório/diagnóstico por imagem , COVID-19/diagnóstico , COVID-19/virologia , Permeabilidade da Membrana Celular/genética , Descoberta de Drogas , Células Endoteliais/ultraestrutura , Células Endoteliais/virologia , Humanos , Processamento de Imagem Assistida por Computador , Pandemias/prevenção & controle , Fenótipo , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/patologia , Artéria Pulmonar/virologia , Edema Pulmonar/diagnóstico , Edema Pulmonar/diagnóstico por imagem , Edema Pulmonar/virologia , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/virologia , Insuficiência Respiratória/diagnóstico , Insuficiência Respiratória/diagnóstico por imagem , Insuficiência Respiratória/virologia , SARS-CoV-2/patogenicidade , Trombina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
10.
Cytometry A ; 99(7): 689-697, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33191639

RESUMO

Chimeric antigen receptor (CAR)-T cell therapy has drawn much attention due to its recent clinical success in B-cell malignancies. In general, the CAR-T cell discovery process consists of CAR identification, T-cell activation, transduction, and expansion, as well as assessment of CAR-T cytotoxicity. The current evaluation methods for the CAR-T discovery process can be time-consuming, low-throughput and requires the preparation of multiple sacrificial samples in order to produce kinetic data. In this study, we employed the use of a plate-based image cytometer to monitor anti-CAIX (carbonic anhydrase IX) G36 CAR-T generation and assess its cytotoxic potency of direct and selective killing against CAIX+ SKRC-59 human renal cell carcinoma cells. The transduction efficiency and cytotoxicity results were analyzed using image cytometry and compared directly to flow cytometry and Chromium 51 (51 Cr) release assays, showing that image cytometry was comparable against these conventional methods. Image cytometry method streamlines the assays required during the CAR-T cell discovery process by analyzing a plate of T cells from CAR-T generation to in vitro functional assays with minimum disruption. The proposed method can reduce assay time and uses less cell samples by imaging and analyze the same plate over time without the need to sacrifice any cells. The ability to monitor kinetic data can allow additional insights into the behavior and interaction between CAR-T and target tumor cells. © 2020 International Society for Advancement of Cytometry.


Assuntos
Receptores de Antígenos Quiméricos , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Citometria por Imagem , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T , Linfócitos T
11.
J Immunol Methods ; 484-485: 112830, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32745474

RESUMO

Since the FDA approval of two Chimeric Antigen Receptor (CAR) T cell therapies against CD19+ malignancies, there has been significant interest in adapting CAR technology to other diseases. As such, the ability to simultaneously monitor manufacturing criteria and functional characteristics of multiple CAR T cell products by a single instrument would likely accelerate the development of candidate therapies. Here, we demonstrate that image-based cytometry yields high-throughput measurements of CAR T cell proliferation and size, and captures the kinetics of in vitro antigen-specific CAR T cell-mediated killing. The data acquired and analyzed by the image cytometer are congruent with results derived from conventional technologies when tested contemporaneously. Moreover, the use of bright-field and fluorescence microscopy by the image cytometer provides kinetic measurements and rapid data acquisition, which are direct advantages over industry standard instruments. Together, image cytometry enables fast, reproducible measurements of CAR T cell manufacturing criteria and effector function, which can greatly facilitate the evaluation of novel CARs with therapeutic potential.


Assuntos
Antígenos CD/imunologia , Proliferação de Células , Citotoxicidade Imunológica , Citometria de Fluxo , Imunoterapia Adotiva , Leucemia Mieloide/terapia , Microscopia de Fluorescência , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Antígenos CD/genética , Antígenos CD/metabolismo , Técnicas de Cocultura , Humanos , Células K562 , Cinética , Leucemia Mieloide/imunologia , Leucemia Mieloide/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/metabolismo , Fluxo de Trabalho
12.
SLAS Discov ; 25(7): 723-733, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32396489

RESUMO

The nonadherent mammosphere assay has been commonly used to investigate cancer stem cell activities in breast cancers that have the ability to form tumorspheres and maintain tumor growth. The sphere formation step is critical, in that it enables the construction of the mammosphere models for downstream assays. The mammosphere assay has also been used to assess the effects of drug treatment on the tumorspheres formed from primary cancer cells or cell lines. Traditionally, the mammosphere formation has been evaluated by standard microscopy systems that required external software for additional analyses. However, this method can be time-consuming and low-throughput, thus impractical for high-throughput characterization of mammosphere models and screening for potential therapeutic cancer drugs. To overcome these challenges, we developed a plate-based high-throughput method to rapidly analyze mammospheres in whole wells using the Celigo Image Cytometer. The method is employed to characterize mammosphere formation and morphology for adherent and nonadherent propagation of four breast cancer cell lines (MCF7, MDA-MB-436, MDA-MB-231, and SKBR3). Next, the dose-dependent effects of four small molecule drugs (doxorubicin, paclitaxel, 8-quinolinol, and salinomycin) are characterized based on sphere formation and viability stained with calcein AM and propidium iodide. We observed growth and morphometric differences between adherent and nonadherent propagation of the four cell lines. Furthermore, drug treatments induced various effects on mammosphere formation, morphology, and viability. The proposed image cytometry method provides a useful tool suitable for high-throughput characterization and analysis of mammospheres, which can improve assay efficiency when investigating the formation capabilities and drug-induced cytotoxicity effects.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Citometria por Imagem , Células-Tronco Neoplásicas/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Feminino , Ensaios de Triagem em Larga Escala/métodos , Humanos , Células MCF-7 , Células-Tronco Neoplásicas/patologia , Oxiquinolina/farmacologia , Paclitaxel/farmacologia , Piranos/farmacologia , Esferoides Celulares/ultraestrutura
13.
PLoS One ; 15(1): e0227950, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31978129

RESUMO

Trypan blue has long been the gold standard for staining dead cell to determine cell viability. The dye is excluded from membrane-intact live cells, but can enter and concentrate in membrane-compromised dead cells, rendering the cells dark blue. Over the years, there has been an understanding that trypan blue is inaccurate for cell viability under 80% without scientific support. We previously showed that trypan blue can alter the morphology of dead cells to a diffuse shape, which can lead to over-estimation of viability. Here, we investigate the origin of the dim and diffuse objects after trypan blue staining. Utilizing image and video acquisition, we show real-time transformation of cells into diffuse objects when stained with trypan blue. The same phenomenon was not observed when staining cells with propidium iodide. We also demonstrate the co-localization of trypan blue and propidium iodide, confirming these diffuse objects as cells that contain nuclei. The videos clearly show immediate cell rupturing after trypan blue contact. The formation of these diffuse objects was monitored and counted over time as cells die outside of the incubator. We hypothesize and demonstrate that rapid water influx may have caused the cells to rupture and disappear. Since some dead cells disappear after trypan blue staining, the total can be under-counted, leading to over-estimation of cell viability. This inaccuracy could affect the outcomes of cellular therapies, which require accurate measurements of immune cells that will be infused back into patients.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Corantes/farmacologia , Células Epiteliais/efeitos dos fármacos , Azul Tripano/farmacologia , Morte Celular/fisiologia , Rastreamento de Células/métodos , Células Epiteliais/ultraestrutura , Humanos , Iodetos/farmacologia , Células Jurkat , Imagem Óptica , Coloração e Rotulagem/métodos
14.
J Immunol Methods ; 479: 112747, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31958449

RESUMO

Chemotaxis is an important aspect of immune cell behavior within the tumor microenvironment (TME). One prominent example of chemotaxis within the TME is the migration of regulatory T cells (Tregs) in response to the chemokine ligands CCL17 and CCL22. Tregs within the TME cause the suppression of anti-tumor immunity and inhibition of the effect of immunotherapeutic treatments. Therefore, the ability to screen for therapeutic antibodies that can inhibit or stimulate the chemotaxis of various immune cell types is crucial. Traditionally, chemotaxis is studied by determining the number of cells in the bottom reservoir of a Transwell microplate using flow cytometry; however, this method is time-consuming and thus not appropriate for high-throughput screening purposes. The Celigo Image Cytometer has been employed to perform high-throughput cell-based assays and was used to develop a new detection method for chemotaxis measurement. The image-based detection method was developed using chemokine ligands CCL17 and CCL22 to induce the migration of CCR4+ T cells and directly count them on the bottom of the Transwell plates. Finally, the method was applied to measure the inhibitory effects of commercially available anti-CCL17 and anti-CCL22 antibodies, which caused a dose-dependent decrease in the number of migrated T cells. The proposed image cytometry method allowed screening of multiple antibodies at various concentrations, simultaneously, which can improve the efficiency for discovering potential antibody candidates that can induce or inhibit recruitment of immune cells to the tumor microenvironment.


Assuntos
Citometria por Imagem/métodos , Neoplasias/diagnóstico , Linfócitos T Reguladores/patologia , Células Cultivadas , Quimiocina CCL17/metabolismo , Quimiocina CCL22/metabolismo , Quimiotaxia , Citometria de Fluxo , Ensaios de Triagem em Larga Escala , Humanos , Neoplasias/imunologia , Receptores CCR4/metabolismo , Microambiente Tumoral
15.
Front Oncol ; 10: 624498, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33659215

RESUMO

SPR965 is an inhibitor of PI3K and mTOR C1/C2 and has demonstrated anti-tumorigenic activity in a variety of solid tumors. We sought to determine the effects of SPR965 on cell proliferation and tumor growth in human serous ovarian cancer cell lines and a transgenic mouse model of high grade serous ovarian cancer (KpB model) and identify the underlying mechanisms by which SPR965 inhibits cell and tumor growth. SPR965 showed marked anti-proliferative activity by causing cell cycle arrest and inducing cellular stress in ovarian cancer cells. Treatment with SPR965 significantly inhibited tumor growth in KpB mice, accompanied by downregulation of Ki67 and VEGF and upregulation of Bip expression in ovarian tumors. SPR965 also inhibited adhesion and invasion through induction of the epithelial-mesenchymal transition process. As expected, downregulation of phosphorylation of AKT and S6 was observed in SPR965-treated ovarian cancer cells and tumors. Our results suggest that SPR965 has significant anti-tumorigenic effects in serous ovarian cancer in vitro and in vivo. Thus, SPR965 should be evaluated as a promising targeted agent in future clinical trials of ovarian cancer.

16.
J Immunol Methods ; 469: 47-51, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30951701

RESUMO

Natural killer (NK) cell-mediated cytotoxicity is traditionally measured using the chromium release assay, which measures the fraction of radioactive 51Cr released from dying target cells co-cultured with NK cells. However, the time frame of 51Cr release assays is limited to approximately 4 h due to spontaneous release of 51Cr. In the tumor microenvironment, interactions between NK cells and tumor cells occur over extended time periods, and NK cell-mediated cytotoxicity is modulated by cytokines produced by tumor cells and other immune cells. Here we demonstrate that the interaction of NK cells and tumor cells can be imaged and quantified over an extended period of time using a novel image cytometry method. Specifically, we imaged killing of human ZsGreen+ melanoma cells by primary human NK cells in the presence of an antibody targeting MICA and MICB on the tumor cell surface. The number of live ZsGreen+ A375 cells was counted in 96-well plates over a three day time frame, and the results were used to first calculate % specific killing at the 4 h time point to compare to 51Cr release assay. Analysis of data from the 4 h time point demonstrated that both 51Cr and image cytometry enable sensitive detection of NK cell-mediated killing of tumor cells. Image cytometry demonstrated that the combination of the MICA/B antibody and IL-2 induced near-complete eradication of A375 melanoma cells by NK cells at later time points. This novel image cytometry based approach will be suitable for the discovery of combination therapies that enhance the cytotoxic function of NK cells against tumor cells.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Melanoma/tratamento farmacológico , Microscopia de Fluorescência , Neoplasias Cutâneas/tratamento farmacológico , Anticorpos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Cocultura , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Interleucina-2/farmacologia , Células Matadoras Naturais/imunologia , Cinética , Melanoma/imunologia , Melanoma/patologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia
17.
J Vis Exp ; (144)2019 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-30799861

RESUMO

Tumor spheroids have been developed as a three-dimensional (3D) cell culture model in cancer research and anti-cancer drug discovery. However, currently, high-throughput imaging modalities utilizing bright field or fluorescence detection, are unable to resolve the overall 3D structure of the tumor spheroid due to limited light penetration, diffusion of fluorescent dyes and depth-resolvability. Recently, our lab demonstrated the use of optical coherence tomography (OCT), a label-free and non-destructive 3D imaging modality, to perform longitudinal characterization of multicellular tumor spheroids in a 96-well plate. OCT was capable of obtaining 3D morphological and physiological information of tumor spheroids growing up to about 600 µm in height. In this article, we demonstrate a high-throughput OCT (HT-OCT) imaging system that scans the whole multi-well plate and obtains 3D OCT data of tumor spheroids automatically. We describe the details of the HT-OCT system and construction guidelines in the protocol. From the 3D OCT data, one can visualize the overall structure of the spheroid with 3D rendered and orthogonal slices, characterize the longitudinal growth curve of the tumor spheroid based on the morphological information of size and volume, and monitor the growth of the dead-cell regions in the tumor spheroid based on optical intrinsic attenuation contrast. We show that HT-OCT can be used as a high-throughput imaging modality for drug screening as well as characterizing biofabricated samples.


Assuntos
Imageamento Tridimensional/métodos , Monitorização Fisiológica , Neoplasias/patologia , Esferoides Celulares/patologia , Tomografia de Coerência Óptica/métodos , Humanos , Células Tumorais Cultivadas
18.
Cytometry A ; 93(10): 1060-1065, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30071132

RESUMO

Single cell sorting is commonly used for ensuring monoclonality and producing homogenous target cell populations. Current single cell verification methods involve manually confirming the existence of single cells or colonies in a well using a standard light microscope. However, the manual verification method is time-consuming and highly tedious, which prompts a need for an accurate and rapid detection method for verifying single cell sorting capability. Here, we demonstrate a rapid single cell sorting verification method using the Celigo Image Cytometer. Calcein AM-stained Jurkat cells and fluorescent beads are sorted into 96-well half area microplates using the MoFlo Astrios EQ. Whole well bright field and fluorescent images are acquired and analyzed using the image cytometer in less than 8 min. The proposed single cell verification detection method in multi-well microplates can allow for quick optimization of FACS instruments at flow core laboratories, as well as improvement of downstream biological assays by accurately confirming the presence of single cells in each well.


Assuntos
Separação Celular/métodos , Citometria de Fluxo/métodos , Citometria por Imagem/métodos , Análise de Célula Única/métodos , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Células Jurkat
19.
SLAS Discov ; 23(2): 202-210, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28915356

RESUMO

Three-dimensional tumor spheroid models have been increasingly used to investigate and characterize cancer drug compounds. Previously, the Celigo image cytometer has demonstrated its utility in a high-throughput screening manner for evaluating potential drug candidates in a 3D multicellular tumor spheroid (MCTS) primary screen. In addition, we have developed real-time kinetic caspase 3/7 apoptosis and propidium iodide viability 3D MCTS assays, both of which can be used in a secondary screen to better characterize the hit compounds. In this work, we monitored the kinetic apoptotic and cytotoxic effects of 14 compounds in 3D MCTS produced from the glioblastoma cell line U87MG in 384-well plates for 9 days. The kinetic results allowed the categorization of the effects from 14 drug compounds into early and late cytotoxic, apoptotic, cytostatic, and no effects. The real-time apoptosis and viability screening method can serve as an improved secondary screen to better understand the mechanism of action of these potential drug candidates identified from the primary screen, allowing one to identify a more qualified drug candidate and streamline the drug discovery process of research and development.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Citometria por Imagem/métodos , Esferoides Celulares/efeitos dos fármacos , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Glioblastoma/tratamento farmacológico , Humanos
20.
Cancer Res ; 77(21): 6011-6020, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28904062

RESUMO

Three-dimensional (3D) tumor spheroid models have gained increased recognition as important tools in cancer research and anticancer drug development. However, currently available imaging approaches used in high-throughput screening drug discovery platforms, for example, bright-field, phase contrast, and fluorescence microscopies, are unable to resolve 3D structures deep inside (>50 µm) tumor spheroids. In this study, we established a label-free, noninvasive optical coherence tomography (OCT) imaging platform to characterize 3D morphologic and physiologic information of multicellular tumor spheroids (MCTS) growing from approximately 250 to 600 µm in height over 21 days. In particular, tumor spheroids of two cell lines, glioblastoma (U-87MG) and colorectal carcinoma (HCT116), exhibited distinctive evolutions in their geometric shapes at late growth stages. Volumes of MCTS were accurately quantified using a voxel-based approach without presumptions of their geometries. In contrast, conventional diameter-based volume calculations assuming perfect spherical shape resulted in large quantification errors. Furthermore, we successfully detected necrotic regions within these tumor spheroids based on increased intrinsic optical attenuation, suggesting a promising alternative of label-free viability tests in tumor spheroids. Therefore, OCT can serve as a promising imaging modality to characterize morphologic and physiologic features of MCTS, showing great potential for high-throughput drug screening. Cancer Res; 77(21); 6011-20. ©2017 AACR.


Assuntos
Imageamento Tridimensional/métodos , Neoplasias/diagnóstico por imagem , Esferoides Celulares/patologia , Tomografia de Coerência Óptica/métodos , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Sobrevivência Celular , Células HCT116 , Humanos , Necrose , Reprodutibilidade dos Testes , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA