Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36901808

RESUMO

The modulation of P-glycoprotein (P-gp, ABCB1) can reverse multidrug resistance (MDR) and potentiate the efficacy of anticancer drugs. Tea polyphenols, such as epigallocatechin gallate (EGCG), have low P-gp-modulating activity, with an EC50 over 10 µM. In this study, we optimized a series of tea polyphenol derivatives and demonstrated that epicatechin EC31 was a potent and nontoxic P-gp inhibitor. Its EC50 for reversing paclitaxel, doxorubicin, and vincristine resistance in three P-gp-overexpressing cell lines ranged from 37 to 249 nM. Mechanistic studies revealed that EC31 restored intracellular drug accumulation by inhibiting P-gp-mediated drug efflux. It did not downregulate the plasma membrane P-gp level nor inhibit P-gp ATPase. It was not a transport substrate of P-gp. A pharmacokinetic study revealed that the intraperitoneal administration of 30 mg/kg of EC31 could achieve a plasma concentration above its in vitro EC50 (94 nM) for more than 18 h. It did not affect the pharmacokinetic profile of coadministered paclitaxel. In the xenograft model of the P-gp-overexpressing LCC6MDR cell line, EC31 reversed P-gp-mediated paclitaxel resistance and inhibited tumor growth by 27.4 to 36.1% (p < 0.001). Moreover, it also increased the intratumor paclitaxel level in the LCC6MDR xenograft by 6 fold (p < 0.001). In both murine leukemia P388ADR and human leukemia K562/P-gp mice models, the cotreatment of EC31 and doxorubicin significantly prolonged the survival of the mice (p < 0.001 and p < 0.01) as compared to the doxorubicin alone group, respectively. Our results suggested that EC31 was a promising candidate for further investigation on combination therapy for treating P-gp-overexpressing cancers.


Assuntos
Antineoplásicos , Neoplasias da Mama , Catequina , Leucemia , Animais , Feminino , Humanos , Camundongos , Antineoplásicos/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Xenoenxertos , Leucemia/tratamento farmacológico , Paclitaxel/farmacologia , Polifenóis/farmacologia , Chá
2.
Int J Mol Sci ; 23(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36499627

RESUMO

Biotransformation of flavonoid dimer FD18 resulted in an active metabolite FM04. It was more druggable because of its improved physicochemical properties. FM04 (EC50 = 83 nM) was 1.8-fold more potent than FD18 in reversing P-glycoprotein (P-gp)-mediated paclitaxel (PTX) resistance in vitro. Similar to FD18, FM04 chemosensitized LCC6MDR cells towards multiple anticancer drugs by inhibiting the transport activity of P-gp and restoring intracellular drug levels. It stimulated the P-gp ATPase by 3.3-fold at 100 µM. Different from FD18, FM04 itself was not a transport substrate of P-gp and presumably, it cannot work as a competitive inhibitor. In the human melanoma MDA435/LCC6MDR xenograft, the co-administration of FM04 (28 mg/kg, I.P.) with PTX (12 mg/kg, I.V.) directly modulated P-gp-mediated PTX resistance and caused a 56% (*, p < 0.05) reduction in tumor volume without toxicity or animal death. When FM04 was administered orally at 45 mg/kg as a dual inhibitor of P-gp/CYP2C8 or 3A4 enzymes in the intestine, it increased the intestinal absorption of PTX from 0.2% to 14% in mice and caused about 57- to 66-fold improvement of AUC as compared to a single oral dose of PTX. Oral co-administration of FM04 (45 mg/kg) with PTX (40, 60 or 70 mg/kg) suppressed the human melanoma MDA435/LCC6 tumor growth with at least a 73% (***, p < 0.001) reduction in tumor volume without serious toxicity. Therefore, FM04 can be developed into a novel combination chemotherapy to treat cancer by directly targeting the P-gp overexpressed tumors or potentiating the oral bioavailability of P-gp substrate drugs.


Assuntos
Melanoma , Paclitaxel , Humanos , Camundongos , Animais , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Flavonoides/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Resistencia a Medicamentos Antineoplásicos , Melanoma/tratamento farmacológico
3.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362047

RESUMO

Overexpression of breast cancer resistance transporter (BCRP/ABCG2) in cancers has been explained for the failure of chemotherapy in clinic. Inhibition of the transport activity of BCRP during chemotherapy should reverse multidrug resistance. In this study, a triazole-bridged flavonoid dimer Ac15(Az8)2 was identified as a potent, nontoxic, and selective BCRP inhibitor. Using BCRP-overexpressing cell lines, its EC50 for reversing BCRP-mediated topotecan resistance was 3 nM in MCF7/MX100 and 72 nM in S1M180 in vitro. Mechanistic studies revealed that Ac15(Az8)2 restored intracellular drug accumulation by inhibiting BCRP-ATPase activity and drug efflux. It did not down-regulate the cell surface BCRP level to enhance drug retention. It was not a transport substrate of BCRP and showed a non-competitive relationship with DOX in binding to BCRP. A pharmacokinetic study revealed that I.P. administration of 45 mg/kg of Ac15(Az8)2 resulted in plasma concentration above its EC50 (72 nM) for longer than 24 h. It increased the AUC of topotecan by 2-fold. In an in vivo model of BCRP-overexpressing S1M180 xenograft in Balb/c nude mice, it significantly reversed BCRP-mediated topotecan resistance and inhibited tumor growth by 40% with no serious body weight loss or death incidence. Moreover, it also increased the topotecan level in the S1M180 xenograft by 2-fold. Our results suggest that Ac15(Az8)2 is a promising candidate for further investigation into combination therapy for treating BCRP-overexpressing cancers.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Topotecan/farmacologia , Flavonoides/farmacologia , Triazóis/farmacologia
4.
Front Pharmacol ; 12: 714790, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721014

RESUMO

Endometriosis is defined as endometrial tissues found outside the uterine cavity. ProEGCG is a prodrug of Epigallocatechin gallate (EGCG), a potent polyphenol found in green tea. It inhibits the development of endometriotic lesions of mouse model in vivo, with higher efficacy and more remarkable anti-oxidative ability than EGCG. Our study aims to identify the molecular binding targets and pharmacological actions of ProEGCG in treating endometriosis. Protein target interaction study is essential to fully characterize the mechanism of actions, related therapeutic effects, and side effects. We employed a combined approach, starting with an in silico reverse screening of protein targets and molecular docking, followed by in vitro cellular thermal shift assay (CESTA) to assess the stability of protein-small molecule complexes. Then microarray and immunostaining of endometriotic lesions in mice in vivo confirmed the molecular interaction of the selected targets after treatment. Our study identified enzymes nicotinamide nucleotide adenylyltransferase (NMNAT)1 and NMNAT3 as protein targets of ProEGCG in silico and in vitro and were overexpressed after ProEGCG treatment in vivo. These findings suggested that participation in nicotinate and nicotinamide metabolism potentially regulated the redox status of endometriosis via its antioxidative capacities through binding to the potential therapeutic targets of ProEGCG.

5.
J Med Chem ; 64(19): 14311-14331, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34606270

RESUMO

We synthesize various substituted triazole-containing flavonoids and identify potent, nontoxic, and highly selective BCRP inhibitors. Ac18Az8, Ac32Az19, and Ac36Az9 possess m-methoxycarbonylbenzyloxy substitution at C-3 of the flavone moiety and substituted triazole at C-4' of the B-ring. They show low toxicity (IC50 toward L929 > 100 µM), potent BCRP-inhibitory activity (EC50 = 1-15 nM), and high BCRP selectivity (BCRP selectivity over MRP1 and P-gp > 67-714). They inhibit the efflux activity of BCRP, elevate the intracellular drug accumulation, and restore the drug sensitivity of BCRP-overexpressing cells. Like Ko143, Ac32Az19 remarkably exhibits a 100% 5D3 shift, indicating that it can bind and cause a conformational change of BCRP. Moreover, it significantly reduces the abundance of functional BCRP dimers/oligomers by half to retain more mitoxantrone in the BCRP-overexpressing cell line and that may account for its inhibitory activity. They are promising candidates to be developed into combination therapy to overcome MDR cancers with BCRP overexpression.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Flavonoides/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Anticorpos Monoclonais/imunologia , Antineoplásicos/química , Flavonoides/química , Células HEK293 , Humanos , Mitoxantrona/farmacologia , Proteínas de Neoplasias/química , Relação Estrutura-Atividade , Especificidade por Substrato
6.
Mol Cancer Ther ; 20(1): 76-84, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33268570

RESUMO

Staphylococcal nuclease domain-containing protein 1 (SND1) is a multifunctional oncoprotein overexpressed in breast cancer. Binding of metadherin (MTDH) to SND1 results in the stabilization of SND1 and is important in the initiation and progression of breast cancer. Disruption of such interaction is a potential therapeutic for breast cancer. SN1/2 domain of SND1 was used as bait in a phage display screening to identify a 12-amino acid peptide 4-2. The activity of peptide 4-2 was evaluated by ELISA, coimmunoprecipitation, MTS, Western blot analysis, and xenograft mouse model. Peptide 4-2 could disrupt SND1-MTDH interaction. Cell penetrating derivative of peptide 4-2 (CPP-4-2) could penetrate and kill breast cancer cells by disrupting SND1-MTDH interaction and degrading SND1. Tryptophan 10 (W10) of peptide 4-2 was essential in mediating cytotoxicity, SND1 interaction, SND1-MTDH disruption, and SND1 degradation. CPP-4-2 could inhibit the growth of breast cancer in a xenograft mouse model. The SND1-interacting peptide 4-2 could kill breast cancer cells both in vitro and in vivo by interacting with SND1, disrupting SND1-MTDH interaction, and inducing SND1 degradation. W10 was an essential amino acid in the activity of peptide 4-2.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Endonucleases/metabolismo , Proteínas de Membrana/metabolismo , Peptídeos/farmacologia , Proteólise , Proteínas de Ligação a RNA/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Visualização da Superfície Celular , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Ligação Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Triptofano/metabolismo
7.
Acta Crystallogr C Struct Chem ; 76(Pt 12): 1085-1095, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33273146

RESUMO

(-)-Epigallocatechin gallate (EGCG), the main component of green tea extract, displays multiple biological activities. However, it cannot be used as a drug due to its low cellular absorption, instability and metabolic degradation. Therefore, there is a need to provide analogs that can overcome the limitations of EGCG. In this work, six synthetic analogs of EGCG sharing a common tetralindiol dibenzoate core were synthesized and fully characterized by 1H NMR, 13C NMR, HRMS and IR spectroscopies, and X-ray crystallography. These are (2R,3S)-1,2,3,4-tetrahydronaphthalene-2,3-diyl bis[3,4,5-tris(benzyloxy)benzoate], C66H56O10, and the analogous esters bis(3,4,5-trimethoxybenzoate), C30H32O10, bis(3,4,5-trifluorobenzoate), C24H14F6O4, bis[4-(benzyloxy)benzoate], C38H32O6, bis(4-methoxybenzoate), C26H24O6, and bis(2,4,6-trifluorobenzoate), C24H14F6O4. Structural analysis revealed that the molecular shapes of these dibenzoate esters of tetralindiol are significantly different from that of previously reported dimandelate esters or monobenzoate esters, as the acid moieties extend far from the bicyclic system without folding back over the tetralin fragment. Compounds with small fluorine substituents take a V-shape, whereas larger methoxy and benzyloxy groups determine the formation of an L-shape or a cavity. Intermolecular interactions are dominated by π-π stacking and C-H...π interactions involving the arene rings in the benzoate fragment and the arene ring in the tetrahydronaphthalene moiety. All six crystal structures are determined in centrosymmetric space groups (either P-1, P21/n, C2/c or I2/a).


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/síntese química , Catequina/análogos & derivados , Tetra-Hidronaftalenos/química , Tetra-Hidronaftalenos/síntese química , Antineoplásicos Fitogênicos/farmacologia , Catequina/síntese química , Catequina/química , Catequina/fisiologia , Cristalografia por Raios X , Desenho de Fármacos , Esterificação , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Eletricidade Estática , Chá/química , Tetra-Hidronaftalenos/farmacologia
8.
BMC Cancer ; 20(1): 964, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023525

RESUMO

BACKGROUND: Previous studies have shown a major green tea polyphenol (-)-epigallocatechin-3-gallate ((-)-EGCG) as a powerful anti-cancer agent. However, its poor bioavailability and requirement of a high dosage to manifest activity have restricted its clinical application. Recently, our team synthesized a peracetate-protected derivative of EGCG, which can act as a prodrug of (-)-EGCG (ProEGCG) with enhanced stability and improved bioavailability in vitro and in vivo. Herein, we tested the therapeutic efficacy of this novel ProEGCG, in comparison to EGCG, toward human endometrial cancer (EC). METHODS: In this study, the effects of ProEGCG and EGCG treatments on cell growth, cell survival and modulation of intracellular signaling pathways in RL95-2 and AN3 CA EC cells were compared. The antiproliferative effect was evaluated by cell viability assay. Apoptosis was measured by annexin/propidium iodide staining. Expression of mitogen-activated protein kinases, markers of proliferation and apoptosis were measured by immunoblot analysis. In addition, the effects of ProEGCG and EGCG on tumor growth, vessel formation and gene expression profiles on xenograft models of the EC cells were investigated. RESULTS: We found that treatment with ProEGCG, but not EGCG, inhibited, in a time- and dose-dependent manner, the proliferation and increased apoptosis of EC cells. Treatment with low-dose ProEGCG significantly enhanced phosphorylation of JNK and p38 MAPK and inhibited phosphorylation of Akt and ERK which are critical mediators of apoptosis. ProEGCG, but not EGCG, elicited a significant decrease in the growth of the EC xenografts, promoted apoptotic activity of tumour cells in the EC xenografts, and decreased microvessel formation, by differentially suppressing anti-apoptotic molecules, NOD1 and NAIP. Notably, no obvious adverse effects were detected. CONCLUSIONS: Taken together, ProEGCG at a low dose exhibited anticancer activity in EC cells through its anti-proliferative, pro-apoptotic and anti-tumor actions on endometrial cancer in vitro and in vivo. In contrast, a low dose of EGCG did not bring about similar effects. Importantly, our data demonstrated the efficacy and safety of ProEGCG which manifests the potential of a novel anticancer agent for the management of endometrial cancer.


Assuntos
Catequina/análogos & derivados , Neoplasias do Endométrio/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Chá/química , Animais , Apoptose , Catequina/química , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Nus , Pró-Fármacos/farmacologia , Transdução de Sinais
9.
J Med Chem ; 62(18): 8578-8608, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31465686

RESUMO

The present work describes the syntheses of diverse triazole bridged flavonoid dimers and identifies potent, nontoxic, and highly selective BCRP inhibitors. A homodimer, Ac22(Az8)2, with m-methoxycarbonylbenzyloxy substitution at C-3 of the flavone moieties and a bis-triazole-containing linker (21 atoms between the two flavones) showed low toxicity (IC50 toward L929, 3T3, and HFF-1 > 100 µM), potent BCRP-inhibitory activity (EC50 = 1-2 nM), and high BCRP selectivity (BCRP selectivity over MRP1 and P-gp > 455-909). Ac22(Az8)2 inhibits BCRP-ATPase activity, blocks the drug efflux activity of BCRP, elevates the intracellular drug accumulation, and finally restores the drug sensitivity of BCRP-overexpressing cells. It does not down-regulate the surface BCRP protein expression to enhance the drug retention. Therefore, Ac22(Az8)2 and similar flavonoid dimers appear to be promising candidates for further development into combination therapy to overcome MDR cancers with BCRP overexpression.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Flavonoides/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Triazóis/química , Células 3T3 , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Animais , Antineoplásicos/química , Simulação por Computador , Cobre/química , Dimerização , Desenho de Fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Flavonas/química , Flavonoides/química , Células HEK293 , Humanos , Camundongos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química
10.
Nutrients ; 10(11)2018 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-30400270

RESUMO

The 5'-3' structure-specific endonuclease ERCC1/XPF (Excision Repair Cross-Complementation Group 1/Xeroderma Pigmentosum group F) plays critical roles in the repair of cisplatin-induced DNA damage. As such, it has been identified as a potential pharmacological target for enhancing clinical response to platinum-based chemotherapy. The goal of this study was to follow up on our previous identification of the compound NSC143099 as a potent inhibitor of ERCC1/XPF activity by performing an in silico screen to identify structural analogues that could inhibit ERCC1/XPF activity in vitro and in vivo. Using a fluorescence-based DNA-endonuclease incision assay, we identified the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) as a potent inhibitor of ERCC1/XPF activity with an IC50 (half maximal inhibitory concentration) in the nanomolar range in biochemical assays. Using DNA repair assays and clonogenic survival assays, we show that EGCG can inhibit DNA repair and enhance cisplatin sensitivity in human cancer cells. Finally, we show that a prodrug of EGCG, Pro-EGCG (EGCG octaacetate), can enhance response to platinum-based chemotherapy in vivo. Together these data support a novel target of EGCG in cancer cells, namely ERCC1/XPF. Our studies also corroborate previous observations that EGCG enhances sensitivity to cisplatin in multiple cancer types. Thus, EGCG or its prodrug makes an ideal candidate for further pharmacological development with the goal of enhancing cisplatin response in human tumors.


Assuntos
Catequina/análogos & derivados , Cisplatino/farmacologia , Reparo do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Polifenóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Catequina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaio Cometa , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos , Endonucleases/genética , Feminino , Humanos , Camundongos , Camundongos Nus , Platina/farmacologia , Pró-Fármacos/farmacologia , Chá/química
11.
J Med Chem ; 61(22): 9931-9951, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30351934

RESUMO

A 300-member flavonoid dimer library of multidrug resistance-associated protein 1 (MRP1, ABCC1) modulators was rapidly assembled using "click chemistry". Subsequent high-throughput screening has led to the discovery of highly potent (EC50 ranging from 53 to 298 nM) and safe (selective indexes ranging from >190 to >1887) MRP1 modulators. Some dimers have potency about 6.5- to 36-fold and 64- to 358-fold higher than the well-known MRP1 inhibitors, verapamil, and MK571, respectively. They inhibited DOX efflux and restored intracellular DOX concentration. The most potent modulator, Ac3Az11, was predicted to bind to the bipartite substrate-binding site of MRP1 in a competitive manner. Moreover, it provided sufficient concentration to maintain its plasma level above its in vitro EC50 (53 nM for DOX) for about 90 min. Overall, we demonstrate that "click chemistry" coupled with high throughput screening is a rapid, reliable, and efficient tool in the discovery of compounds having potent MRP1-modualting activity.


Assuntos
Dimerização , Desenho de Fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Flavonoides/química , Flavonoides/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Alcinos/química , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Azidas/química , Linhagem Celular Tumoral , Química Click , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Flavonoides/metabolismo , Flavonoides/farmacocinética , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Conformação Proteica
12.
Eur J Med Chem ; 155: 285-302, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29894943

RESUMO

The worldwide prevalence of NDM-1-producing bacteria has drastically undermined the clinical efficacy of the last line antibiotic of carbapenems, prompting a need to devise effective strategy to preserve their clinical value. Our previous studies have shown that ebselen can restore the efficacy of meropenem against a laboratory strain that produces NDM-1. Here we report the construction of a focused compound library of 1,2-benzisoselenazol-3(2H)-one derivatives which comprise a total of forty-six candidate compounds. The structure-activity relationship of these compounds and their potential to serve as an adjuvant to enhance the antimicrobial efficacy of meropenem against a collection of clinical NDM-1-producing carbapenem-resistant Enterobacteriaceae isolates was examined. Drug combination assays indicated that these derivatives exhibited synergistic antimicrobial activity when used along with meropenem, effectively restoring the activity of carbapenems against the resistant strains tested in a Galleria mellonella larvae in vivo infection model. The mode of inhibition of one compound, namely 11_a38, which was depicted when tested on the purified NDM-1 enzyme, indicated that it could covalently bind to the enzyme and displaced one zinc ion from the active site. Overall, this study provides a novel 1,2-benzisoselenazol-3(2H)-one scaffold that exhibits strong synergistic antimicrobial activity with carbapenems, and low cytotoxicity. The prospect of application of such compounds as carbapenem adjuvants warrants further evaluation.


Assuntos
Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Tienamicinas/farmacologia , beta-Lactamases/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Enterobacteriáceas Resistentes a Carbapenêmicos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Meropeném , Estrutura Molecular , Compostos Organosselênicos/química , Relação Estrutura-Atividade , Tienamicinas/química
13.
Expert Opin Drug Discov ; 13(7): 643-660, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29688074

RESUMO

INTRODUCTION: Increasing evidence has expanded the role of green tea from a traditional beverage to a source of pharmacologically active molecules with diverse health benefits. However, conclusive clinical results are needed to better elucidate the cancer-preventive and therapeutic effects of green tea polyphenols (GTPs). Areas covered: The authors describe GTPs' chemical compositions and metabolic biotransformations, and their recent developments in drug discovery, focusing on their cancer chemopreventive and therapeutic effects. They then review the recent development of GTP-loaded nanoparticles and GTP prodrugs. Expert opinion: GTPs possess potent anticarcinogenic activities through interfering with the initiation, development and progression phases of cancer. There are several challenges (e.g. poor bioavailability) in developing GTPs as therapeutic agents. Use of nanoparticle-based delivery systems has provided unique advantages over purified GTPs. However, there is still a need to determine the actual magnitude and pharmacological mechanisms of GTPs encapsulated in nanoparticles, in order to address newly emerging safety issues associated with the potential 'local overdose' effect. The use of Pro- epigallocatechin gallate (Pro-EGCG) as a prodrug appears to offer improved in vitro stability as well as better in vivo bioavailability and efficacies in a number of animal studies, suggesting its potential as a therapeutic agent for further study and development.


Assuntos
Anticarcinógenos/farmacologia , Polifenóis/farmacologia , Chá/química , Animais , Anticarcinógenos/administração & dosagem , Anticarcinógenos/isolamento & purificação , Catequina/administração & dosagem , Catequina/análogos & derivados , Catequina/isolamento & purificação , Catequina/farmacologia , Descoberta de Drogas/métodos , Humanos , Nanopartículas , Neoplasias/prevenção & controle , Polifenóis/administração & dosagem , Polifenóis/isolamento & purificação , Pró-Fármacos
14.
Cancer Lett ; 412: 10-20, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29024813

RESUMO

Anti-angiogenesis effect of a prodrug of green tea polyphenol (-)-epigallocatechin-3-gallate (Pro-EGCG) in malignant tumors is not well studied. Here, we investigated how the treatment with Pro-EGCG inhibited tumor angiogenesis in endometrial cancer. Tumor xenografts of human endometrial cancer were established and subjected to microarray analysis after Pro-EGCG treatment. First, we showed Pro-EGCG inhibited tumor angiogenesis in xenograft models through down-regulation of vascular endothelial growth factor A (VEGFA) and hypoxia inducible factor 1 alpha (HIF1α) in tumor cells and chemokine (C-X-C motif) ligand 12 (CXCL12) in host stroma by immunohistochemical staining. Next, we investigated how HIF1α/VEGFA was down-regulated and how the reduction of CXCL12 inhibited tumor angiogenesis. We found that VEGFA secretion from endometrial cancer cells was decreased by Pro-EGCG treatment through inhibiting PI3K/AKT/mTOR/HIF1α pathway. Furthermore, the down-regulation of CXCL12 in stromal cells by Pro-EGCG treatment restricted migration and differentiation of macrophages thereby inhibited infiltration of VEGFA-expressing tumor-associated macrophages (TAMs). Taken together, we demonstrated that treatment with Pro-EGCG not only decreases cancer cell-secreted VEGFA but also inhibits TAM-secreted VEGFA in endometrial cancer. These findings demonstrate that Pro-EGCG is a novel angiogenesis inhibitor for endometrial cancer.


Assuntos
Inibidores da Angiogênese/farmacologia , Catequina/análogos & derivados , Neoplasias do Endométrio/tratamento farmacológico , Pró-Fármacos/farmacologia , Chá/química , Animais , Catequina/farmacologia , Movimento Celular , Quimiocina CXCL12/fisiologia , Feminino , Humanos , Macrófagos/fisiologia , Camundongos , Inibidores de Fosfoinositídeo-3 Quinase , Fator A de Crescimento do Endotélio Vascular/análise
15.
Nutrients ; 9(5)2017 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-28531166

RESUMO

The present study was designed to characterize the bone protective effects of (-)-epiafzelechin (EAF), a flavan-3-ol, in mature ovariectomized mice model and its ability to stimulate osteoblastic activity and inhibit osteoclastic activity. Mature C57BL/6 mice (three to four months old) were either ovariectomised (OVX) or sham-operated and subjected to treatment (vehicle, 17ß-oestradiol (E2, 200 µg/kg/day) or EAF (500 µg/kg/day) orally for six weeks. EAF and E2 significantly reduced urinary calcium (Ca) excretion, serum osteocalcin (OCN), and urinary deoxy-pyridinoline (DPD); increased bone mineral density (BMD); and improved micro-architectural properties in OVX mice. EAF significantly increased cell viability, alkaline phosphatise (ALP) activity, and collagen content, as well as runt-related transcriptional factor 2 (Runx2) mRNA expression in murine osteoblastic MC3T3-E1 cells. In addition, EAF significantly reduced the viability of osteoclast precursor murine leukemia monocyte RAW 264.7 cells and tartrate-resistant acid phosphatase (TRAP) activities in mature osteoclastic RAW 264.7 cells. EAF is a bioactive flavan-3-ol that protects estrogen deficiency-induced bone loss in OVX mice and exerts direct modulating effects in bone cells in vitro.


Assuntos
Densidade Óssea/efeitos dos fármacos , Catequina/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoporose/prevenção & controle , Animais , Biomarcadores/sangue , Biomarcadores/urina , Cálcio/urina , Catequina/química , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Osteocalcina/sangue , Osteoporose/metabolismo , Ovariectomia , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Biochem Pharmacol ; 124: 10-18, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984000

RESUMO

MRP1 overexpression in multidrug-resistant cancer cells has been shown to be responsible for collateral sensitivity to some flavonoids that stimulate a huge MRP1-mediated GSH efflux. This massive GSH depletion triggers the death of these cancer cells. We describe here that bivalent flavonoid dimers strikingly stimulate such MRP1-mediated GSH efflux and trigger a 50-100 fold more potent cell death than their corresponding monomers. This selective and massive cell death of MRP1-overexpressing cells (both transfected and drug-selected cell lines) is no longer observed either upon catalytic inactivation of MRP1 or its knockdown by siRNA. The best flavonoid dimer, 4e, kills MRP1-overexpressing cells with a selective ratio higher than 1000 compared to control cells and an EC50 value of 0.1 µM, so far unequaled as a collateral sensitivity agent targeting ABC transporters. This result portends the flavonoid dimer 4e as a very promising compound to appraise in vivo the therapeutic potential of collateral sensitivity for eradication of MRP1-overexpressing chemoresistant cancer cells in tumors.


Assuntos
Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Flavonoides/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Animais , Linhagem Celular Tumoral , Dimerização , Glutationa/metabolismo , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética
17.
J Cell Biochem ; 117(10): 2357-69, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26950525

RESUMO

Uterine fibroids (leiomyomas) are very common benign tumors grown on the smooth muscle layer of the uterus, present in up to 75% of reproductive-age women and causing significant morbidity in a subset of this population. Although the etiology and biology of uterine fibroids are unclear, strong evidence supports that cell proliferation, angiogenesis and fibrosis are involved in their formation and growth. Currently the only cure for uterine fibroids is hysterectomy; the available alternative therapies have limitations. Thus, there is an urgent need for developing a novel strategy for treating this condition. The green tea polyphenol epigallocatechin gallate (EGCG) inhibits the growth of uterine leiomyoma cells in vitro and in vivo, and the use of a green tea extract (containing 45% EGCG) has demonstrated clinical activity without side effects in women with symptomatic uterine fibroids. However, EGCG has a number of shortcomings, including low stability, poor bioavailability, and high metabolic transformations under physiological conditions, presenting challenges for its development as a therapeutic agent. We developed a prodrug of EGCG (Pro-EGCG or 1) which shows increased stability, bioavailability and biological activity in vivo as compared to EGCG. We also synthesized prodrugs of EGCG analogs, compounds 2a and 4a, in order to potentially reduce their susceptibility to methylation/inhibition by catechol-O-methyltransferase. Here, we determined the effect of EGCG, Pro-EGCG, and 2a and 4a on cultured human uterine leiomyoma cells, and found that 2a and 4a have potent antiproliferative, antiangiogenic, and antifibrotic activities. J. Cell. Biochem. 117: 2357-2369, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Apoptose/efeitos dos fármacos , Catequina/análogos & derivados , Leiomioma/patologia , Neovascularização Patológica/patologia , Pró-Fármacos/farmacologia , Chá/química , Neoplasias Uterinas/patologia , Western Blotting , Catequina/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Imunofluorescência , Humanos , Leiomioma/tratamento farmacológico , Leiomioma/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Neoplasias Uterinas/tratamento farmacológico , Neoplasias Uterinas/metabolismo
18.
Mol Pharm ; 12(10): 3507-17, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26291333

RESUMO

Flavonoid dimer FD18 is a new class of dimeric P-gp modulator that can reverse cancer drug resistance. FD18 is a potent (EC50 = 148 nM for paclitaxel), safe (selective index = 574), and selective P-glycoprotein (P-gp) modulator. FD18 can modulate multidrug resistance toward paclitaxel, vinblastine, vincristine, doxorubicin, daunorubicin, and mitoxantrone in human breast cancer LCC6MDR in vitro. FD18 (1 µM) can revert chemosensitivity of LCC6MDR back to parental LCC6 level. FD18 was 11- to 46-fold more potent than verapamil. FD18 (1 µM) can increase accumulation of doxorubicin by 2.7-fold, daunorubicin (2.1-fold), and rhodamine 123 (5.2-fold) in LCC6MDR. FD18 inhibited P-gp-mediated doxorubicin efflux and has no effect on influx. FD18 at 1 µM did not affect the protein expression level of P-gp. Pharmacokinetics studies indicated that intraperitoneal administration of 45 mg/kg FD18 was enough to maintain a plasma level above EC50 (148 nM) for more than 600 min. Toxicity studies with FD18 (90 mg/kg, i.p. for 12 times in 22 days) with paclitaxel (12 mg/kg, i.v. for 12 times in 22 days) revealed no obvious toxicity or death in mice. In vivo efficacy studies indicated that FD18 (45 mg/kg, i.p. for 12 times in 22 days) together with paclitaxel (12 mg/kg, i.v. for 12 times in 22 days) resulted in a 46% reduction in LCC6MDR xenograft volume (n = 11; 648 ± 84 mm(3)) compared to paclitaxel control (n = 8; 1201 ± 118 mm(3)). There were no animal deaths or significant drop in body weight and vital organ wet weight. FD18 can increase paclitaxel accumulation in LCC6MDR xenograft by 1.8- to 2.2-fold. The present study suggests that FD18 represents a new class of safe and potent P-gp modulator in vivo.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Flavonas/uso terapêutico , Flavonoides/uso terapêutico , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Western Blotting , Linhagem Celular Tumoral , Feminino , Flavonas/efeitos adversos , Flavonas/farmacocinética , Flavonas/farmacologia , Flavonoides/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias
19.
Anticancer Agents Med Chem ; 15(5): 657-71, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25511514

RESUMO

Adenosine Monophosphate-Activated Protein Kinase or AMPK is a highly-conserved master-regulator of numerous cellular processes, including: Maintaining cellular-energy homeostasis, modulation of cytoskeletaldynamics, directing cell growth-rates and influencing cell-death pathways. AMPK has recently emerged as a promising molecular target in cancer therapy. In fact, AMPK deficiencies have been shown to enhance cell growth and proliferation, which is consistent with enhancement of tumorigenesis by AMPK-loss. Conversely, activation of AMPK is associated with tumor growth suppression via inhibition of the Mammalian Target of Rapamycin Complex-1 (mTORC1) or the mTOR signal pathway. The scientific communities' recognition that AMPK-activating compounds possess an anti-neoplastic effect has contributed to a rush of discoveries and developments in AMPK-activating compounds as potential anticancer-drugs. One such example is the class of compounds known as Biguanides, which include Metformin and Phenformin. The current review will showcase natural compounds and their derivatives that activate the AMPK-complex and signaling pathway. In addition, the biology and history of AMPK-signaling and AMPK-activating compounds will be overviewed, their anticancer-roles and mechanisms-of-actions will be discussed, and potential strategies for the development of novel, selective AMPK-activators with enhanced efficacy and reduced toxicity will be proposed.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Ativadores de Enzimas/farmacologia , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Ativadores de Enzimas/química , Humanos , Neoplasias/enzimologia , Neoplasias/patologia
20.
Expert Opin Ther Pat ; 23(2): 189-202, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23230990

RESUMO

INTRODUCTION: Over the past three years numerous patents and patent applications have been published relating to scientific advances in the use of the green tea polyphenol epigallocatechin gallate (EGCG) (the most abundant, and bioactive compound in green tea) and its analogs as anticancer agents. EGCG affects multiple molecular targets involved in cancer cell proliferation and survival; however, polyphenolic catechins, such as EGCG, generally exhibit poor oral bioavailability. Since the anticancer activity of polyphenols largely depends on their susceptibility to biotransformation reactions, numerous EGCG derivatives, analogs and prodrugs have been designed to improve the stability, bioavailability and anticancer potency of the native compound. AREAS COVERED: This review focuses on the applications of EGCG and its analogs, derivatives and prodrugs in the prevention and treatment of human cancers. A comprehensive description of patents related to EGCG and its derivatives, analogs and prodrugs and their uses as anticancer agents is included. EXPERT OPINION: EGCG targets multiple essential survival proteins and pathways in human cancer cells. Because it is unstable physiologically, numerous alterations to the EGCG molecule have been patented, either to improve the integrity of the native compound or to generate a more stable yet similarly efficacious molecule. EGCG and its derivatives, analogs and prodrugs could be developed into future drugs for chemoprevention, chemosensitization, radiosensitization and/or cancer interception.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Catequina/análogos & derivados , Desenho de Fármacos , Patentes como Assunto , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/uso terapêutico , Catequina/química , Catequina/farmacologia , Catequina/uso terapêutico , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA