Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166784, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37321514

RESUMO

BACKGROUND: Endometriosis is a debilitating disease typically characterized by prolific fibrotic scarring. Earlier we reported downregulation of two transcription factors belonging TGF-ßR signaling pathway Sp/Krüppel-like factor 11 (KLF11) and 10 (KLF10) in human endometriosis lesions. Here we investigated the role of these nuclear factors and immunity in the scaring fibrosis associated with endometriosis. METHODS: We used a well characterized experimental mouse model of endometriosis. WT, KLF10 or KLF11 deficient mice were compared. The lesions were evaluated histologically, fibrosis was quantified with Masons' Trichome staining, immune-infiltrates were quantified by immunohistochemistry, peritoneal adhesions were score, gene expression was evaluated by bulk RNA sequencing. RESULTS: Intense fibrotic reactions and large changes in gene expression were detected in KLF11 deficient implants associated with squamous metaplasia of the ectopic endometrium, as compared to KLF10 deficient or WT implants. Fibrosis was mitigated with pharmacologic agents that blocked histone acetylation or TGF-ßR signaling or with genetic deficiency for SMAD3. The lesions were richly infiltrated with T-cells, regulatory T-cells, and innate immune cells. Fibrosis was exacerbated when implants expressed ectopic genes implicating autoimmunity as a major factor contributing to the scaring fibrosis. CONCLUSIONS: Our findings identify KLF11 and TGF-ßR signaling as cell intrinsic mechanisms and autoimmune responses as cell extrinsic mechanisms of scaring fibrosis in ectopic endometrium lesions. GENERAL SIGNIFICANCE: Immunological factors associated with inflammation and tissue repair drive scaring fibrosis in experimental endometriosis, providing the rationale for immune therapy of endometriosis.


Assuntos
Endometriose , Animais , Feminino , Humanos , Camundongos , Endometriose/metabolismo , Fibrose , Fatores de Transcrição/metabolismo
2.
BMC Med Genomics ; 14(1): 165, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158040

RESUMO

BACKGROUND: DNA polymerase epsilon (POLE) is encoded by the POLE gene, and POLE-driven tumors are characterized by high mutational rates. POLE-driven tumors are relatively common in endometrial and colorectal cancer, and their presence is increasingly recognized in ovarian cancer (OC) of endometrioid type. POLE-driven cases possess an abundance of TCT > TAT and TCG > TTG somatic mutations characterized by mutational signature 10 from the Catalog of Somatic Mutations in Cancer (COSMIC). By quantifying the contribution of COSMIC mutational signature 10 in RNA sequencing (RNA-seq) we set out to identify POLE-driven tumors in a set of unselected Mayo Clinic OC. METHODS: Mutational profiles were calculated using expressed single-nucleotide variants (eSNV) in the Mayo Clinic OC tumors (n = 195), The Cancer Genome Atlas (TCGA) OC tumors (n = 419), and the Genotype-Tissue Expression (GTEx) normal ovarian tissues (n = 84). Non-negative Matrix Factorization (NMF) of the mutational profiles inferred the contribution per sample of four distinct mutational signatures, one of which corresponds to COSMIC mutational signature 10. RESULTS: In the Mayo Clinic OC cohort we identified six tumors with a predicted contribution from COSMIC mutational signature 10 of over five mutations per megabase. These six cases harbored known POLE hotspot mutations (P286R, S297F, V411L, and A456P) and were of endometrioid histotype (P = 5e-04). These six tumors had an early onset (average age of patients at onset, 48.33 years) when compared to non-POLE endometrioid OC cohort (average age at onset, 60.13 years; P = .008). Samples from TCGA and GTEx had a low COSMIC signature 10 contribution (median 0.16 mutations per megabase; maximum 1.78 mutations per megabase) and carried no POLE hotspot mutations. CONCLUSIONS: From the largest cohort of RNA-seq from endometrioid OC to date (n = 53), we identified six hypermutated samples likely driven by POLE (frequency, 11%). Our result suggests the clinical need to screen for POLE driver mutations in endometrioid OC, which can guide enrollment in immunotherapy clinical trials.


Assuntos
Carcinoma Endometrioide
3.
Sci Rep ; 11(1): 9362, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931674

RESUMO

Angiosarcoma is an aggressive malignancy of endothelial cells that carries a high mortality rate. Cytotoxic chemotherapy can elicit clinical responses, but the duration of response is limited. Sequencing reveals multiple mutations in angiogenesis pathways in angiosarcomas, particularly in vascular endothelial growth factor (VEGFR) and mitogen-activated protein kinase (MAPK) signaling. We aimed to determine the biological relevance of these pathways in angiosarcoma. Tissue microarray consisting of clinical formalin-fixed paraffin embedded tissue archival samples were stained for phospho- extracellular signal-regulated kinase (p-ERK) with immunohistochemistry. Angiosarcoma cell lines were treated with the mitogen-activated protein kinase kinase (MEK) inhibitor trametinib, pan-VEGFR inhibitor cediranib, or combined trametinib and cediranib and viability was assessed. Reverse phase protein array (RPPA) was performed to assess multiple oncogenic protein pathways. SVR angiosarcoma cells were grown in vivo and gene expression effects of treatment were assessed with whole exome RNA sequencing. MAPK signaling was found active in over half of clinical angiosarcoma samples. Inhibition of MAPK signaling with the MEK inhibitor trametinib decreased the viability of angiosarcoma cells. Combined inhibition of the VEGF and MAPK pathways with cediranib and trametinib had an additive effect in in vitro models, and a combinatorial effect in an in vivo model. Combined treatment led to smaller tumors than treatment with either agent alone. RNA-seq demonstrated distinct expression signatures between the trametinib treated tumors and those treated with both trametinib and cediranib. These results indicate a clinical study of combined VEGFR and MEK inhibition in angiosarcoma is warranted.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hemangiossarcoma/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Hemangiossarcoma/metabolismo , Hemangiossarcoma/patologia , Humanos , Camundongos , Camundongos Nus , Prognóstico , Piridonas/administração & dosagem , Pirimidinonas/administração & dosagem , Quinazolinas/administração & dosagem , Transcriptoma , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
PLoS One ; 14(10): e0223337, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31577830

RESUMO

BACKGROUND: RNA sequencing has been proposed as a means of increasing diagnostic rates in studies of undiagnosed rare inherited disease. Recent studies have reported diagnostic improvements in the range of 7.5-35% by profiling splicing, gene expression quantification and allele specific expression. To-date however, no study has systematically assessed the presence of gene-fusion transcripts in cases of germline disease. Fusion transcripts are routinely identified in cancer studies and are increasingly recognized as having diagnostic, prognostic or therapeutic relevance. Isolated reports exist of fusion transcripts being detected in cases of developmental and neurological phenotypes, and thus, systematic application of fusion detection to germline conditions may further increase diagnostic rates. However, current fusion detection methods are unsuited to the investigation of germline disease due to performance biases arising from their development using tumor, cell-line or in-silico data. METHODS: We describe a tailored approach to fusion candidate identification and prioritization in a cohort of 47 undiagnosed, suspected inherited disease patients. We modify an existing fusion transcript detection algorithm by eliminating its cell line-derived filtering steps, and instead, prioritize candidates using a custom workflow that integrates genomic and transcriptomic sequence alignment, biological and technical annotations, customized categorization logic, and phenotypic prioritization. RESULTS: We demonstrate that our approach to fusion transcript identification and prioritization detects genuine fusion events excluded by standard analyses and efficiently removes phenotypically unimportant candidates and false positive events, resulting in a reduced candidate list enriched for events with potential phenotypic relevance. We describe the successful genetic resolution of two previously undiagnosed disease cases through the detection of pathogenic fusion transcripts. Furthermore, we report the experimental validation of five additional cases of fusion transcripts with potential phenotypic relevance. CONCLUSIONS: The approach we describe can be implemented to enable the detection of phenotypically relevant fusion transcripts in studies of rare inherited disease. Fusion transcript detection has the potential to increase diagnostic rates in rare inherited disease and should be included in RNA-based analytical pipelines aimed at genetic diagnosis.


Assuntos
Estudos de Associação Genética , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Proteínas Mutantes Quiméricas/genética , Doenças Raras/diagnóstico , Doenças Raras/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética/métodos , Marcadores Genéticos , Humanos , Lactente , Padrões de Herança , Masculino , Pessoa de Meia-Idade , Fenótipo , Fluxo de Trabalho , Adulto Jovem
5.
Sci Rep ; 9(1): 6314, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-31004097

RESUMO

As patient derived xenograft (PDX) models are increasingly used for preclinical drug development, strategies to account for the nonhuman component of PDX RNA expression data are critical to its interpretation. A bioinformatics pipeline to separate donor tumor and mouse stroma transcriptome profiles was devised and tested. To examine the molecular fidelity of PDX versus donor tumors, we compared mRNA differences between paired PDX-donor tumors from nine ovarian cancer patients. 1,935 differentially expressed genes were identified between PDX and donor tumors. Over 90% (n = 1767) of these genes were down-regulated in PDX models and enriched in stroma-specific functions. Several protein kinases were also differentially expressed in PDX tumors, e.g. PDGFRA, PDGFRB and CSF1R. Upon in silico removal of these PDX-donor tumor differentially expressed genes, a stronger transcriptional resemblance between PDX-donor tumor pairs was seen (average correlation coefficient increases from 0.91 to 0.95). We devised and validated an effective bioinformatics strategy to separate mouse stroma expression from human tumor expression for PDX RNAseq. In addition, we showed most of the PDX-donor differentially expressed genes were implicated in stromal components. The molecular similarities and differences between PDX and donor tumors have implications in future therapeutic trial designs and treatment response evaluations using PDX models.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Transplante de Neoplasias , Neoplasias Ovarianas/metabolismo , Animais , Feminino , Xenoenxertos , Humanos , Camundongos , Neoplasias Ovarianas/patologia
6.
JCI Insight ; 3(8)2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29669928

RESUMO

Although immune checkpoint inhibitors have resulted in durable clinical benefits in a subset of patients with advanced cancer, some patients who did not respond to initial anti-PD-1 therapy have been found to benefit from the addition of salvage chemotherapy. However, the mechanism responsible for the successful chemoimmunotherapy is not completely understood. Here we show that a subset of circulating CD8+ T cells expressing the chemokine receptor CX3CR1 are able to withstand the toxicity of chemotherapy and are increased in patients with metastatic melanoma who responded to chemoimmunotherapy (paclitaxel and carboplatin plus PD-1 blockade). These CX3CR1+CD8+ T cells have effector memory phenotypes and the ability to efflux chemotherapy drugs via the ABCB1 transporter. In line with clinical observation, our preclinical models identified an optimal sequencing of chemoimmunotherapy that resulted in an increase of CX3CR1+CD8+ T cells. Taken together, we found a subset of PD-1 therapy-responsive CD8+ T cells that were capable of withstanding chemotherapy and executing tumor rejection with their unique abilities of drug efflux (ABCB1), cytolytic activity (granzyme B and perforin), and migration to and retention (CX3CR1 and CD11a) at tumor sites. Future strategies to monitor and increase the frequency of CX3CR1+CD8+ T cells may help to design effective chemoimmunotherapy to overcome cancer resistance to immune checkpoint blockade therapy.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Receptor 1 de Quimiocina CX3C/efeitos dos fármacos , Imunoterapia/métodos , Melanoma/imunologia , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Receptor 1 de Quimiocina CX3C/imunologia , Carboplatina/uso terapêutico , Citotoxinas/farmacologia , Quimioterapia Combinada , Feminino , Granzimas/farmacologia , Humanos , Masculino , Melanoma/tratamento farmacológico , Melanoma/secundário , Camundongos , Neoplasias/imunologia , Paclitaxel/uso terapêutico , Perforina/farmacologia
7.
J Cell Physiol ; 233(8): 5926-5936, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29243809

RESUMO

Transplantation of autologous mesenchymal stem cells (MSCs) may be a viable option for treatment of several diseases. MSCs efficacy depends on adequate function of their mitochondria, which might be impaired in a noxious milieu. We hypothesized that obesity compromises MSCs mitochondrial structure and function, possibly via micro-RNA (miRNA)-based mechanisms. MSCs were collected from swine abdominal adipose tissue after 16 weeks of Lean or Obese diet (n = 7 each). Mitochondrial structure was assessed by electron microscopy and function by membrane potential and cytochrome-c oxidase (COX)-IV activity. Oxidative stress was assessed by Mito-SOX and dihydroethidium staining. Next-generation sequencing (RNA-seq) was performed to identify miRNAs expression in MSCs, and predicted mitochondrial target genes were then identified (MitoCarta). Compared to Lean-MSCs, mitochondria from Obese-MSCs were smaller and showed cristae remodeling and loss. Mitochondrial membrane potential and COX-IV activity decreased in Obese-MSCs, associated with increased mitochondrial oxidative stress. RNA-seq generated reads for 413 miRNAs, of which 5 miRNAs were upregulated in Obese-MSCs (fold change >2, p < 0.05) and found to target 43 specific mitochondrial genes. Obesity impairs MSC mitochondrial structure and function, possibly mediated partly through miRNA-induced mitochondrial gene regulation, leading to increased oxidative stress. Importantly, these alterations may limit the therapeutic use of autologous MSCs in subjects with obesity.


Assuntos
Tecido Adiposo/citologia , Células-Tronco Mesenquimais/patologia , Mitocôndrias/patologia , Obesidade/patologia , Tecido Adiposo/patologia , Animais , Células Cultivadas , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Potencial da Membrana Mitocondrial/fisiologia , Transplante de Células-Tronco Mesenquimais , MicroRNAs/biossíntese , MicroRNAs/genética , Microscopia Eletrônica , Mitocôndrias/ultraestrutura , Estresse Oxidativo/fisiologia , Suínos
8.
Cytometry A ; 93(1): 93-103, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28678424

RESUMO

Autologous transplantation of mesenchymal stem cells (MSCs) is a viable option for the treatment of several diseases. Evidence indicates that MSCs release extracellular vesicles (EVs) and that EVs shuttle miRNAs to damaged parenchymal cells to activate an endogenous repair program. We hypothesize that comorbidities may interfere with the packaging of cargo in MSC-derived EVs. Therefore, we examined whether metabolic syndrome (MetS) modulates the miRNA content packed within MSC-derived EVs. MSCs were collected from swine abdominal adipose tissue after 16 weeks of lean or obese diet (n = 7 each). Next-generation RNA sequencing of miRNAs (miRNA-seq) was performed to identify miRNAs enriched in MSC-derived EVs and their predicted target genes. Functional pathway analysis of the top 50 target genes of the top 4 miRNAs enriched in each group was performed using gene ontology analysis. Lean- and MetS-EVs were enriched in, respectively, 14 and 8 distinct miRNAs. Target genes of miRNAs enriched in MetS-EVs were implicated in the development of MetS and its complications, including diabetes-related pathways, validated transcriptional targets of AP1 family members Fra1 and Fra2, Class A/1 (Rhodopsin-like receptors), and Peptide ligand-binding receptors. In contrast, miRNAs enriched in Lean EVs target primarily EphrinA-EPHA and the Rho family of GTPases. MetS alters the miRNA content of EVs derived from porcine adipose tissue MSCs. These alterations could impair the efficacy and limit the therapeutic use of autologous MSCs in subjects with MetS. Our findings may assist in developing adequate regenerative strategies to preserve the reparative potency of MSCs in individuals with MetS. © 2017 International Society for Advancement of Cytometry.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Modelos Animais de Doenças , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Feminino , Transplante de Células-Tronco Mesenquimais , Síndrome Metabólica/genética , Sus scrofa , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA