Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 317(6): E999-E1014, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31526287

RESUMO

Insulin resistance has wide-ranging effects on metabolism, but there are knowledge gaps regarding the tissue origins of systemic metabolite patterns and how patterns are altered by fitness and metabolic health. To address these questions, plasma metabolite patterns were determined every 5 min during exercise (30 min, ∼45% of V̇o2peak, ∼63 W) and recovery in overnight-fasted sedentary, obese, insulin-resistant women under controlled conditions of diet and physical activity. We hypothesized that improved fitness and insulin sensitivity following a ∼14-wk training and weight loss intervention would lead to fixed workload plasma metabolomics signatures reflective of metabolic health and muscle metabolism. Pattern analysis over the first 15 min of exercise, regardless of pre- versus postintervention status, highlighted anticipated increases in fatty acid tissue uptake and oxidation (e.g., reduced long-chain fatty acids), diminution of nonoxidative fates of glucose [e.g., lowered sorbitol-pathway metabolites and glycerol-3-galactoside (possible glycerolipid synthesis metabolite)], and enhanced tissue amino acid use (e.g., drops in amino acids; modest increase in urea). A novel observation was that exercise significantly increased several xenometabolites ("non-self" molecules, from microbes or foods), including benzoic acid-salicylic acid-salicylaldehyde, hexadecanol-octadecanol-dodecanol, and chlorogenic acid. In addition, many nonannotated metabolites changed with exercise. Although exercise itself strongly impacted the global metabolome, there were surprisingly few intervention-associated differences despite marked improvements in insulin sensitivity, fitness, and adiposity. These results and previously reported plasma acylcarnitine profiles support the principle that most metabolic changes during submaximal aerobic exercise are closely tethered to absolute ATP turnover rate (workload), regardless of fitness or metabolic health status.


Assuntos
Aminoácidos/metabolismo , Exercício Físico/fisiologia , Ácidos Graxos/metabolismo , Glucose/metabolismo , Resistência à Insulina , Metaboloma , Obesidade/terapia , Comportamento Sedentário , Programas de Redução de Peso , Adiposidade , Adulto , Jejum , Feminino , Humanos , Metabolômica , Pessoa de Meia-Idade , Obesidade/metabolismo , Oxirredução , Consumo de Oxigênio , Aptidão Física
2.
Exp Physiol ; 102(1): 48-69, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27730694

RESUMO

NEW FINDINGS: What is the central question of this study? Does improved metabolic health and insulin sensitivity following a weight-loss and fitness intervention in sedentary, obese women alter exercise-associated fuel metabolism and incomplete mitochondrial fatty acid oxidation (FAO), as tracked by blood acylcarnitine patterns? What is the main finding and its importance? Despite improved fitness and blood sugar control, indices of incomplete mitochondrial FAO increased in a similar manner in response to a fixed load acute exercise bout; this indicates that intramitochondrial muscle FAO is inherently inefficient and is tethered directly to ATP turnover. With insulin resistance or type 2 diabetes mellitus, mismatches between mitochondrial fatty acid fuel delivery and oxidative phosphorylation/tricarboxylic acid cycle activity may contribute to inordinate accumulation of short- or medium-chain acylcarnitine fatty acid derivatives [markers of incomplete long-chain fatty acid oxidation (FAO)]. We reasoned that incomplete FAO in muscle would be ameliorated concurrent with improved insulin sensitivity and fitness following a ∼14 week training and weight-loss intervention in obese, sedentary, insulin-resistant women. Contrary to this hypothesis, overnight-fasted and exercise-induced plasma C4-C14 acylcarnitines did not differ between pre- and postintervention phases. These metabolites all increased robustly with exercise (∼45% of pre-intervention peak oxygen consumption) and decreased during a 20 min cool-down. This supports the idea that, regardless of insulin sensitivity and fitness, intramitochondrial muscle ß-oxidation and attendant incomplete FAO are closely tethered to absolute ATP turnover rate. Acute exercise also led to branched-chain amino acid acylcarnitine derivative patterns suggestive of rapid and transient diminution of branched-chain amino acid flux through the mitochondrial branched-chain ketoacid dehydrogenase complex. We confirmed our prior novel observation that a weight-loss/fitness intervention alters plasma xenometabolites [i.e. cis-3,4-methylene-heptanoylcarnitine and γ-butyrobetaine (a co-metabolite possibly derived in part from gut bacteria)], suggesting that host metabolic health regulated gut microbe metabolism. Finally, we considered whether acylcarnitine metabolites signal to muscle-innervating afferents; palmitoylcarnitine at concentrations as low as 1-10 µm activated a subset (∼2.5-5%) of these neurons ex vivo. This supports the hypothesis that in addition to tracking exercise-associated shifts in fuel metabolism, muscle acylcarnitines act as signals of exertion to short-loop somatosensory-motor circuits or to the brain.


Assuntos
Biomarcadores/metabolismo , Carnitina/análogos & derivados , Exercício Físico/fisiologia , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , Neurônios Aferentes/metabolismo , Neurônios Aferentes/fisiologia , Trifosfato de Adenosina/metabolismo , Adulto , Aminoácidos de Cadeia Ramificada/metabolismo , Carnitina/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Ácidos Graxos/metabolismo , Feminino , Humanos , Resistência à Insulina/fisiologia , Pessoa de Meia-Idade , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/fisiopatologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Oxirredução , Fosforilação Oxidativa , Consumo de Oxigênio/fisiologia , Redução de Peso/fisiologia
3.
J Nutr ; 132(8 Suppl): 2367S-2372S, 2002 08.
Artigo em Inglês | MEDLINE | ID: mdl-12163694

RESUMO

The goals and objectives of these studies, conducted over the past 30 y, were to determine: a) how chronic alcoholism leads to folate deficiency and b) how folate deficiency contributes to the pathogenesis of alcoholic liver disease (ALD). The intestinal absorption of folic acid was decreased in binge drinking alcoholics and, prospectively, in volunteers fed alcohol with low folate diets. Monkeys fed alcohol for 2 y developed decreased hepatic folate stores, folic acid malabsorption and decreased hepatic uptake but increased urinary excretion of labeled folic acid. Micropigs fed alcohol for 1 y developed features of ALD in association with decreased translation and activity of intestinal reduced folate carrier. Another study in ethanol-fed micropigs demonstrated abnormal hepatic methionine and DNA nucleotide imbalance and increased hepatocellular apoptosis. When alcohol feeding was combined with folate deficiency, micropigs developed typical histological features of ALD in 14 wk, together with elevated plasma homocysteine levels, reduced liver S-adenosylmethionine and glutathione and increased markers for DNA and lipid oxidation. In summary, chronic alcohol exposure impairs folate absorption by inhibiting expression of the reduced folate carrier and decreasing the hepatic uptake and renal conservation of circulating folate. At the same time, folate deficiency accelerates alcohol-induced changes in hepatic methionine metabolism while promoting enhanced oxidative liver injury and the histopathology of ALD.


Assuntos
Etanol/metabolismo , Ácido Fólico/metabolismo , Animais , Etanol/administração & dosagem , Ácido Fólico/administração & dosagem , Humanos , Absorção Intestinal , Hepatopatias Alcoólicas/metabolismo , Metionina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA