Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
HGG Adv ; 4(2): 100186, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37009414

RESUMO

TSPEAR variants cause autosomal recessive ectodermal dysplasia (ARED) 14. The function of TSPEAR is unknown. The clinical features, the mutation spectrum, and the underlying mechanisms of ARED14 are poorly understood. Combining data from new and previously published individuals established that ARED14 is primarily characterized by dental anomalies such as conical tooth cusps and hypodontia, like those seen in individuals with WNT10A-related odontoonychodermal dysplasia. AlphaFold-predicted structure-based analysis showed that most of the pathogenic TSPEAR missense variants likely destabilize the ß-propeller of the protein. Analysis of 100000 Genomes Project (100KGP) data revealed multiple founder TSPEAR variants across different populations. Mutational and recombination clock analyses demonstrated that non-Finnish European founder variants likely originated around the end of the last ice age, a period of major climatic transition. Analysis of gnomAD data showed that the non-Finnish European population TSPEAR gene-carrier rate is ∼1/140, making it one of the commonest AREDs. Phylogenetic and AlphaFold structural analyses showed that TSPEAR is an ortholog of drosophila Closca, an extracellular matrix-dependent signaling regulator. We, therefore, hypothesized that TSPEAR could have a role in enamel knot, a structure that coordinates patterning of developing tooth cusps. Analysis of mouse single-cell RNA sequencing (scRNA-seq) data revealed highly restricted expression of Tspear in clusters representing enamel knots. A tspeara -/-;tspearb -/- double-knockout zebrafish model recapitulated the clinical features of ARED14 and fin regeneration abnormalities of wnt10a knockout fish, thus suggesting interaction between tspear and wnt10a. In summary, we provide insights into the role of TSPEAR in ectodermal development and the evolutionary history, epidemiology, mechanisms, and consequences of its loss of function variants.


Assuntos
Displasia Ectodérmica , Dente , Animais , Camundongos , Filogenia , Peixe-Zebra , Displasia Ectodérmica/epidemiologia , Dente/patologia
2.
Eur J Hum Genet ; 29(9): 1377-1383, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33603162

RESUMO

ERBB4 encodes the tyrosine kinase receptor HER4, a critical regulator of normal cell function and neurodevelopmental processes in the brain. One of the key ligands of HER4 is neureglin-1 (NRG1), and the HER4-NRG1 signalling pathway is essential in neural crest cell migration, and neuronal differentiation. Pharmacological inactivation of HER4 has been shown to hasten the progression of epileptogenesis in rodent models, and heterozygous ERBB4 null mice are shown to have cognitive deficits and delayed motor development. Thus far there is only a single case report in the literature of a heterozygous ERBB4 deletion in a patient with intellectual disability (ID). We identified nine subjects from five unrelated families with chromosome 2q34 deletions, resulting in heterozygous intragenic loss of multiple exons of ERBB4, associated with either non-syndromic ID or generalised epilepsy. In one family, the deletion segregated with ID in five affected relatives. Overall, this case series further supports that haploinsufficiency of ERBB4 leads to non-syndromic intellectual disability or epilepsy.


Assuntos
Epilepsia/genética , Deficiência Intelectual/genética , Receptor ErbB-4/genética , Adolescente , Adulto , Criança , Cromossomos Humanos Par 2/genética , Epilepsia/patologia , Éxons , Feminino , Deleção de Genes , Haploinsuficiência , Humanos , Deficiência Intelectual/patologia , Masculino , Linhagem
3.
Eur J Med Genet ; 63(9): 103974, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32534991

RESUMO

Ligase IV (LIG4) syndrome is a rare disorder of DNA damage repair caused by biallelic, pathogenic variants in LIG4. This is a phenotypically heterogeneous condition with clinical presentation varying from lymphoreticular malignancies in developmentally normal individuals to significant microcephaly, primordial dwarfism, radiation hypersensitivity, severe combined immunodeficiency and early mortality. Renal defects have only rarely been described as part of the ligase IV disease spectrum. We identified a consanguineous family where three siblings presenting with antenatal growth retardation, microcephaly, severe renal anomalies and skeletal abnormalities, including radial ray defects. Autozygosity mapping and exome sequencing identified a novel homozygous frameshift variant in LIG4, c.597_600delTCAG, p.(Gln200LysfsTer33), which segregated in the family. LIG4 is encoded by a single exon and so this frameshift variant is predicted to result in a protein truncated by 678 amino acids. This is the shortest predicted LIG4 protein product reported and correlates with the most severe clinical phenotype described to date. We note the clinical overlap with Fanconi anemia and suggest that LIG4 syndrome is considered in the differential diagnosis of this severe developmental disorder.


Assuntos
Anormalidades Craniofaciais/genética , DNA Ligase Dependente de ATP/genética , Anemia de Fanconi/genética , Transtornos do Crescimento/genética , Síndromes de Imunodeficiência/genética , Microcefalia/genética , Rim Displásico Multicístico/genética , Fenótipo , Rádio (Anatomia)/anormalidades , Adulto , Consanguinidade , Anormalidades Craniofaciais/patologia , Anemia de Fanconi/patologia , Feminino , Feto/anormalidades , Mutação da Fase de Leitura , Transtornos do Crescimento/patologia , Humanos , Síndromes de Imunodeficiência/patologia , Recém-Nascido , Masculino , Microcefalia/patologia , Rim Displásico Multicístico/patologia , Gravidez , Rádio (Anatomia)/embriologia
4.
Am J Hum Genet ; 101(6): 1021-1033, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29220674

RESUMO

ACTB encodes ß-actin, an abundant cytoskeletal housekeeping protein. In humans, postulated gain-of-function missense mutations cause Baraitser-Winter syndrome (BRWS), characterized by intellectual disability, cortical malformations, coloboma, sensorineural deafness, and typical facial features. To date, the consequences of loss-of-function ACTB mutations have not been proven conclusively. We describe heterozygous ACTB deletions and nonsense and frameshift mutations in 33 individuals with developmental delay, apparent intellectual disability, increased frequency of internal organ malformations (including those of the heart and the renal tract), growth retardation, and a recognizable facial gestalt (interrupted wavy eyebrows, dense eyelashes, wide nose, wide mouth, and a prominent chin) that is distinct from characteristics of individuals with BRWS. Strikingly, this spectrum overlaps with that of several chromatin-remodeling developmental disorders. In wild-type mouse embryos, ß-actin expression was prominent in the kidney, heart, and brain. ACTB mRNA expression levels in lymphoblastic lines and fibroblasts derived from affected individuals were decreased in comparison to those in control cells. Fibroblasts derived from an affected individual and ACTB siRNA knockdown in wild-type fibroblasts showed altered cell shape and migration, consistent with known roles of cytoplasmic ß-actin. We also demonstrate that ACTB haploinsufficiency leads to reduced cell proliferation, altered expression of cell-cycle genes, and decreased amounts of nuclear, but not cytoplasmic, ß-actin. In conclusion, we show that heterozygous loss-of-function ACTB mutations cause a distinct pleiotropic malformation syndrome with intellectual disability. Our biological studies suggest that a critically reduced amount of this protein alters cell shape, migration, proliferation, and gene expression to the detriment of brain, heart, and kidney development.


Assuntos
Anormalidades Múltiplas/genética , Actinas/genética , Deficiências do Desenvolvimento/genética , Haploinsuficiência/genética , Actinas/biossíntese , Adolescente , Adulto , Idoso , Animais , Ciclo Celular/genética , Proliferação de Células/genética , Criança , Pré-Escolar , Códon sem Sentido/genética , Coloboma/genética , Fácies , Feminino , Mutação da Fase de Leitura/genética , Deleção de Genes , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Malformações do Desenvolvimento Cortical/genética , Camundongos , Interferência de RNA , RNA Interferente Pequeno/genética , Adulto Jovem
5.
Eur J Paediatr Neurol ; 20(2): 286-295, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26748598

RESUMO

INTRODUCTION: Next Generation Sequencing (NGS) is a useful tool in diagnosis of rare disorders but the interpretation of data can be challenging in clinical settings. We present results of extended studies on a family of multiple members with global developmental delay and learning disability, where another research group postulated the underlying cause to be a homozygous RABL6 missense variant. METHODS AND RESULTS: Using data from the Exome Variant Server, we show that missense RABL6 variants are unlikely to cause early onset rare developmental disorder. Protein structural analysis, cellular functional studies and reverse phenotyping proved that the condition in this family is due to a homozygous INPP5E mutation. An in-depth review of mutational and phenotypic spectrum associated with INPP5E demonstrated that mutations in this gene lead to a range of cilliopathy-phenotypes. DISCUSSION: We use this study as an example to demonstrate the importance of careful clinical evaluation of multiple family members, reverse phenotyping, considering the unknown phenotypic variability of rare diseases, utilizing publically available genomic databases and conducting appropriate bioinformatics and functional studies while interpreting results from NGS in uncertain cases. We emphasize that interpretation of NGS data is an iterative process and its dynamic nature should be explained to patients and families. Our study shows that developmental delay, intellectual disability, hypotonia and ocular motor apraxia are common in INPP5E-related disorders and considerable intra-familial phenotypic variability is possible. We have compiled the INPP5E mutational spectrum and provided novel insights into their molecular mechanisms.


Assuntos
Deficiências do Desenvolvimento/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Monoéster Fosfórico Hidrolases/genética , Feminino , Humanos , Masculino , Mutação , Proteínas Oncogênicas/genética , Linhagem , Fenótipo , Proteínas rab de Ligação ao GTP/genética
6.
Am J Hum Genet ; 97(4): 535-45, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26387595

RESUMO

Heimler syndrome (HS) is a rare recessive disorder characterized by sensorineural hearing loss (SNHL), amelogenesis imperfecta, nail abnormalities, and occasional or late-onset retinal pigmentation. We ascertained eight families affected by HS and, by using a whole-exome sequencing approach, identified biallelic mutations in PEX1 or PEX6 in six of them. Loss-of-function mutations in both genes are known causes of a spectrum of autosomal-recessive peroxisome-biogenesis disorders (PBDs), including Zellweger syndrome. PBDs are characterized by leukodystrophy, hypotonia, SNHL, retinopathy, and skeletal, craniofacial, and liver abnormalities. We demonstrate that each HS-affected family has at least one hypomorphic allele that results in extremely mild peroxisomal dysfunction. Although individuals with HS share some subtle clinical features found in PBDs, the diagnosis was not suggested by routine blood and skin fibroblast analyses used to detect PBDs. In conclusion, our findings define HS as a mild PBD, expanding the pleiotropy of mutations in PEX1 and PEX6.


Assuntos
Adenosina Trifosfatases/genética , Amelogênese Imperfeita/genética , Fibroblastos/patologia , Perda Auditiva Neurossensorial/genética , Proteínas de Membrana/genética , Mutação/genética , Unhas Malformadas/genética , Peroxissomos/patologia , ATPases Associadas a Diversas Atividades Celulares , Adolescente , Adulto , Estudos de Casos e Controles , Células Cultivadas , Criança , Pré-Escolar , Feminino , Fibroblastos/metabolismo , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Peroxissomos/metabolismo , Fenótipo , Prognóstico , Taxa de Sobrevida , Adulto Jovem
7.
Am J Med Genet A ; 167A(2): 296-312, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25604658

RESUMO

Aicardi-Goutières syndrome is an inflammatory disease occurring due to mutations in any of TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR or IFIH1. We report on 374 patients from 299 families with mutations in these seven genes. Most patients conformed to one of two fairly stereotyped clinical profiles; either exhibiting an in utero disease-onset (74 patients; 22.8% of all patients where data were available), or a post-natal presentation, usually within the first year of life (223 patients; 68.6%), characterized by a sub-acute encephalopathy and a loss of previously acquired skills. Other clinically distinct phenotypes were also observed; particularly, bilateral striatal necrosis (13 patients; 3.6%) and non-syndromic spastic paraparesis (12 patients; 3.4%). We recorded 69 deaths (19.3% of patients with follow-up data). Of 285 patients for whom data were available, 210 (73.7%) were profoundly disabled, with no useful motor, speech and intellectual function. Chilblains, glaucoma, hypothyroidism, cardiomyopathy, intracerebral vasculitis, peripheral neuropathy, bowel inflammation and systemic lupus erythematosus were seen frequently enough to be confirmed as real associations with the Aicardi-Goutieres syndrome phenotype. We observed a robust relationship between mutations in all seven genes with increased type I interferon activity in cerebrospinal fluid and serum, and the increased expression of interferon-stimulated gene transcripts in peripheral blood. We recorded a positive correlation between the level of cerebrospinal fluid interferon activity assayed within one year of disease presentation and the degree of subsequent disability. Interferon-stimulated gene transcripts remained high in most patients, indicating an ongoing disease process. On the basis of substantial morbidity and mortality, our data highlight the urgent need to define coherent treatment strategies for the phenotypes associated with mutations in the Aicardi-Goutières syndrome-related genes. Our findings also make it clear that a window of therapeutic opportunity exists relevant to the majority of affected patients and indicate that the assessment of type I interferon activity might serve as a useful biomarker in future clinical trials.


Assuntos
Adenosina Desaminase/genética , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/genética , RNA Helicases DEAD-box/genética , Exodesoxirribonucleases/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Mutação , Malformações do Sistema Nervoso/diagnóstico , Malformações do Sistema Nervoso/genética , Fenótipo , Fosfoproteínas/genética , Ribonuclease H/genética , Estudos de Associação Genética , Genótipo , Humanos , Helicase IFIH1 Induzida por Interferon , Interferons/sangue , Interferons/líquido cefalorraquidiano , Pterinas/líquido cefalorraquidiano , Proteína 1 com Domínio SAM e Domínio HD
8.
Am J Med Genet A ; 164A(7): 1713-33, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24782230

RESUMO

Somatic mutations in the phosphatidylinositol/AKT/mTOR pathway cause segmental overgrowth disorders. Diagnostic descriptors associated with PIK3CA mutations include fibroadipose overgrowth (FAO), Hemihyperplasia multiple Lipomatosis (HHML), Congenital Lipomatous Overgrowth, Vascular malformations, Epidermal nevi, Scoliosis/skeletal and spinal (CLOVES) syndrome, macrodactyly, and the megalencephaly syndrome, Megalencephaly-Capillary malformation (MCAP) syndrome. We set out to refine the understanding of the clinical spectrum and natural history of these phenotypes, and now describe 35 patients with segmental overgrowth and somatic PIK3CA mutations. The phenotypic data show that these previously described disease entities have considerable overlap, and represent a spectrum. While this spectrum overlaps with Proteus syndrome (sporadic, mosaic, and progressive) it can be distinguished by the absence of cerebriform connective tissue nevi and a distinct natural history. Vascular malformations were found in 15/35 (43%) and epidermal nevi in 4/35 (11%) patients, lower than in Proteus syndrome. Unlike Proteus syndrome, 31/35 (89%) patients with PIK3CA mutations had congenital overgrowth, and in 35/35 patients this was asymmetric and disproportionate. Overgrowth was mild with little postnatal progression in most, while in others it was severe and progressive requiring multiple surgeries. Novel findings include: adipose dysregulation present in all patients, unilateral overgrowth that is predominantly left-sided, overgrowth that affects the lower extremities more than the upper extremities and progresses in a distal to proximal pattern, and in the most severely affected patients is associated with marked paucity of adipose tissue in unaffected areas. While the current data are consistent with some genotype-phenotype correlation, this cannot yet be confirmed.


Assuntos
Estudos de Associação Genética , Fenótipo , Fosfatidilinositol 3-Quinases/genética , Tecido Adiposo/patologia , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Classe I de Fosfatidilinositol 3-Quinases , Feminino , Genótipo , Humanos , Hiperplasia/diagnóstico , Hiperplasia/genética , Lactente , Recém-Nascido , Lipoma/diagnóstico , Lipoma/genética , Masculino , Pessoa de Meia-Idade , Anormalidades Musculoesqueléticas/diagnóstico , Anormalidades Musculoesqueléticas/genética , Mutação , Nevo/diagnóstico , Nevo/genética , Especificidade de Órgãos/genética , Malformações Vasculares/diagnóstico , Malformações Vasculares/genética , Adulto Jovem
9.
Lancet Neurol ; 12(12): 1159-69, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24183309

RESUMO

BACKGROUND: Aicardi-Goutières syndrome (AGS) is an inflammatory disorder caused by mutations in any of six genes (TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR). The disease is severe and effective treatments are urgently needed. We investigated the status of interferon-related biomarkers in patients with AGS with a view to future use in diagnosis and clinical trials. METHODS: In this case-control study, samples were collected prospectively from patients with mutation-proven AGS. The expression of six interferon-stimulated genes (ISGs) was measured by quantitative PCR, and the median fold change, when compared with the median of healthy controls, was used to create an interferon score for each patient. Scores higher than the mean of controls plus two SD (>2·466) were designated as positive. Additionally, we collated historical data for interferon activity, measured with a viral cytopathic assay, in CSF and serum from mutation-positive patients with AGS. We also undertook neutralisation assays of interferon activity in serum, and looked for the presence of autoantibodies against a panel of interferon proteins. FINDINGS: 74 (90%) of 82 patients had a positive interferon score (median 12·90, IQR 6·14-20·41) compared with two (7%) of 29 controls (median 0·93, IQR 0·57-1·30). Of the eight patients with a negative interferon score, seven had mutations in RNASEH2B (seven [27%] of all 26 patients with mutations in this gene). Repeat sampling in 16 patients was consistent for the presence or absence of an interferon signature on 39 of 41 occasions. Interferon activity (tested in 147 patients) was negatively correlated with age (CSF, r=-0·604; serum, r=-0·289), and was higher in CSF than in serum in 104 of 136 paired samples. Neutralisation assays suggested that measurable antiviral activity was related to interferon α production. We did not record significantly increased concentrations of autoantibodies to interferon subtypes in patients with AGS, or an association between the presence of autoantibodies and interferon score or serum interferon activity. INTERPRETATION: AGS is consistently associated with an interferon signature, which is apparently sustained over time and can thus be used to differentiate patients with AGS from controls. If future studies show that interferon status is a reactive biomarker, the measurement of an interferon score might prove useful in the assessment of treatment efficacy in clinical trials. FUNDING: European Union's Seventh Framework Programme; European Research Council.


Assuntos
Adenosina Desaminase/genética , Doenças Autoimunes do Sistema Nervoso/metabolismo , Exodesoxirribonucleases/genética , Regulação da Expressão Gênica , Interferon Tipo I/fisiologia , Proteínas Monoméricas de Ligação ao GTP/genética , Malformações do Sistema Nervoso/metabolismo , Fosfoproteínas/genética , Ribonuclease H/genética , Adolescente , Adulto , Autoanticorpos/sangue , Doenças Autoimunes do Sistema Nervoso/genética , Biomarcadores , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Heterogeneidade Genética , Genótipo , Humanos , Lactente , Interferon Tipo I/sangue , Interferon Tipo I/líquido cefalorraquidiano , Interferon Tipo I/imunologia , Masculino , Mutação , Malformações do Sistema Nervoso/genética , Testes de Neutralização , Estudos Prospectivos , RNA Mensageiro/biossíntese , Proteínas de Ligação a RNA , Proteína 1 com Domínio SAM e Domínio HD , Regulação para Cima , Adulto Jovem
10.
Epilepsia ; 51(8): 1533-42, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20002144

RESUMO

PURPOSE: Valproic acid (VPA) is widely used clinically in epilepsy, bipolar disorder, and migraine. In experimental models, it has also been shown to have neuroprotective and antiepileptogenic effects. Its mechanisms of action in these diverse conditions are, however, unclear, but there is some evidence indicating an effect of VPA upon protein kinase A (PKA) activity. We, therefore, asked whether VPA modulates cyclic adenosine monophosphate (cAMP)/PKA-dependent synaptic plasticity and whether this mode of action could explain its anticonvulsant effect. METHODS: We first tested the effects of VPA on PKA-dependent synaptic plasticity at mossy fiber to CA3 synapses in rat hippocampus slices following very high-frequency stimulation or application of the adenylyl cyclase activator forskolin. Using biochemical assays, we then tested whether VPA had a direct effect on PKA activity or an indirect effect through modulating cAMP production. Lastly, VPA and inhibitors of adenylyl cyclase (SQ22536) and PKA (H89) were tested in in vitro models of epileptiform activity induced in hippocampal-entorhinal cortex slices using either pentylenetetrazol (2 mM) or low magnesium. RESULTS: VPA (1 mm) inhibited PKA-dependent long-term potentiation of mossy fiber to CA3 pyramidal cell transmission. However, VPA did not directly modulate PKA activity but rather inhibited the accumulation of cAMP. In acute in vitro seizure models, the anticonvulsant activity of VPA is not mediated through modulation of adenylyl cyclase or PKA. CONCLUSIONS: These results indicate that VPA through an action on cAMP accumulation can inhibit synaptic plasticity, but this cannot fully explain its anticonvulsant effect.


Assuntos
Anticonvulsivantes/farmacologia , Encéfalo , AMP Cíclico/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Ácido Valproico/farmacologia , Análise de Variância , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Epilepsia/patologia , Isoquinolinas/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Sulfonamidas/farmacologia
11.
Am J Hum Genet ; 81(4): 713-25, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17846997

RESUMO

Aicardi-Goutieres syndrome (AGS) is a genetic encephalopathy whose clinical features mimic those of acquired in utero viral infection. AGS exhibits locus heterogeneity, with mutations identified in genes encoding the 3'-->5' exonuclease TREX1 and the three subunits of the RNASEH2 endonuclease complex. To define the molecular spectrum of AGS, we performed mutation screening in patients, from 127 pedigrees, with a clinical diagnosis of the disease. Biallelic mutations in TREX1, RNASEH2A, RNASEH2B, and RNASEH2C were observed in 31, 3, 47, and 18 families, respectively. In five families, we identified an RNASEH2A or RNASEH2B mutation on one allele only. In one child, the disease occurred because of a de novo heterozygous TREX1 mutation. In 22 families, no mutations were found. Null mutations were common in TREX1, although a specific missense mutation was observed frequently in patients from northern Europe. Almost all mutations in RNASEH2A, RNASEH2B, and RNASEH2C were missense. We identified an RNASEH2C founder mutation in 13 Pakistani families. We also collected clinical data from 123 mutation-positive patients. Two clinical presentations could be delineated: an early-onset neonatal form, highly reminiscent of congenital infection seen particularly with TREX1 mutations, and a later-onset presentation, sometimes occurring after several months of normal development and occasionally associated with remarkably preserved neurological function, most frequently due to RNASEH2B mutations. Mortality was correlated with genotype; 34.3% of patients with TREX1, RNASEH2A, and RNASEH2C mutations versus 8.0% RNASEH2B mutation-positive patients were known to have died (P=.001). Our analysis defines the phenotypic spectrum of AGS and suggests a coherent mutation-screening strategy in this heterogeneous disorder. Additionally, our data indicate that at least one further AGS-causing gene remains to be identified.


Assuntos
Doenças dos Gânglios da Base/genética , Adolescente , Adulto , Doenças dos Gânglios da Base/líquido cefalorraquidiano , Doenças dos Gânglios da Base/patologia , Encéfalo/patologia , Calcinose/genética , Calcinose/patologia , Pérnio/genética , Pérnio/patologia , Criança , Pré-Escolar , Análise Mutacional de DNA , Exodesoxirribonucleases/genética , Feminino , Humanos , Lactente , Recém-Nascido , Linfocitose/líquido cefalorraquidiano , Linfocitose/genética , Masculino , Dados de Sequência Molecular , Mutação , Fenótipo , Fosfoproteínas/genética , Ribonuclease H/genética , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA