Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 4513, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934131

RESUMO

Biomimicry is becoming deep-rooted as part of bioceramics owing to its numerous functional advantages. Naturally occurring hydroxyapatite (HA) apart from primary nano structures are also characterised by various ionic substitutions. The ease of accommodating such key elements into the HA lattice is known to enhance bone healing properties of bioceramics. In this work, hydroxyapatite synthesized via biomimetic approach was substituted with individual as well as multiple cations for potential applications in bone repair. Ion substitutions of Sr, Mg and Zn was carried out on HA for the first time by using Serratia grown in a defined biomineralization medium. The individual ions of varying concentration substituted in Serratia HA (SHA) (Sr SHA, Mg SHA and Zn SHA) were analysed for crystallinity, functional groups, morphology and crystal size. All three showed decreased crystallinity, phase purity, large agglomerated aggregates and needle-shaped morphologies. Fourier transform infrared spectroscopy (FTIR) spectra indicated increased carbonate content of 5.8% resembling that of natural bone. Additionally, the reduced O-H intensities clearly portrayed disruption of HA lattice and subsequent ion-substitution. The novelty of this study lies primarily in investigating the co-substitution of a combination of 1% Sr, Zn and Mg in SHA and establishing the associated change in bone parameters. Scanning electron microscope (SEM) and transmission electron microscope (TEM) images clearly illustrated uniform nano-sized agglomerates of average dimensions of 20-50 nm length and 8-15 nm width for Sr SHA; 10-40 nm length and 8-10 nm width for both Zn SHA and Mg SHA and 40-70 nm length and 4-10 nm width in the case of 1% Sr, Zn, Mg SHA. In both individual as well as co-substitutions, significant peak shifts were not observed possibly due to the lower concentrations. However, cell volumes increased in both cases due to presence of Sr2+ validating its dominant integration into the SHA lattice. Rich trace ion deposition was presented by energy dispersive X-ray spectroscopy (EDS) and quantified using inductively coupled plasma optical emission spectrometer (ICP-OES). In vitro cytotoxicity studies in three cell lines viz. NIH/3T3 fibroblast cells, MG-63 osteosarcoma cells and RAW 264.7 macrophages showed more than 90% cell viability proving the biocompatible nature of 1% Sr, Zn and Mg in SHA. Microbial biomineralization by Serratia produced nanocrystals of HA that mimicked "bone-like apatite" as evidenced by pure phase, carbonated groups, reduced crystallinity, nano agglomerates, variations in cell parameters, rich ion deposition and non-toxic nature. Therefore ion-substituted and co-substituted biomineralized nano SHA appears to be a suitable candidate for applications in biomedicine addressing bone injuries and aiding regeneration as a result of its characteristics close to that of the human bone.


Assuntos
Durapatita , Nanopartículas , Humanos , Durapatita/química , Serratia marcescens , Biomimética , Nanopartículas/química , Íons , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
2.
Appl Biochem Biotechnol ; 174(6): 2307-25, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25178419

RESUMO

Ashbya gossypii is a plant pathogen and a natural overproducer of riboflavin and is used for industrial riboflavin production. A few literature reports depict a link between riboflavin overproduction and stress in this fungus. However, the stress protection mechanisms and glutathione metabolism are not much explored in A. gossypii. In the present study, an increase in the activity of catalase and superoxide dismutase was observed in response to hydrogen peroxide and menadione. The lipid peroxide and membrane lipid peroxide levels were increased by H2O2 and menadione, indicating oxidative damage. The glutathione metabolism was altered with a significant increase in oxidized glutathione (GSSG), glutathione peroxidase (GPX), glutathione S transferase (GST), and glutathione reductase (GR) and a decrease in reduced glutathione (GSH) levels in the presence of H2O2 and menadione. Expression of the genes involved in stress mechanism was analyzed in response to the stressors by semiquantitative RT-PCR. The messenger RNA (mRNA) levels of CTT1, SOD1, GSH1, YAP1, and RIB3 were increased by H2O2 and menadione, indicating the effect of stress at the transcriptional level. A preliminary bioinformatics study for the presence of stress response elements (STRE)/Yap response elements (YRE) depicted that the glutathione metabolic genes, stress genes, and the RIB genes hosted either STRE/YRE, which may enable induction of these genes during stress.


Assuntos
Eremothecium/efeitos dos fármacos , Eremothecium/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Riboflavina/biossíntese , Vitamina K 3/farmacologia , Antioxidantes/farmacologia , Biomassa , Relação Dose-Resposta a Droga , Eremothecium/citologia , Eremothecium/genética , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Estresse Oxidativo/genética , Elementos de Resposta/efeitos dos fármacos , Fatores de Tempo , Fatores de Transcrição/metabolismo
3.
J Biol Chem ; 260(1): 202-7, 1985 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-3155516

RESUMO

The pattern of incorporation of [14C]N-ethylmaleimide (MalNEt) into gizzard myosin indicates the presence of two classes of thiols: rapidly and slowly modified. The first class contains two thiol residues, SH-A and SH-B, located in the myosin rod and the 17-kDa light chain, respectively, while the second contains at least two thiols located in the myosin heavy chain. Changes in ATPase activities upon modification occur rapidly or slowly, paralleling reaction of either the first or second class of thiols. Rapid changes include increases in the Ca2+- and Mg2+-activated activities of myosin alone, measured at ionic strengths below 0.3 M, and an increase and a decrease in the actin-activated activity of dephosphorylated and phosphorylated myosin, respectively. Modification of SH-A and SH-B with MalNEt is accompanied by stabilization of myosin filaments, seen as an increase in light-scattering intensity, and by destabilization of the folded, 10 S conformation of the myosin monomer. In the presence of 0.175 M NaCl and 1 mM MgATP, unmodified and MalNEt-modified myosin sediment in the ultracentrifuge as single components at 10.0 S and 6.0 S, respectively. The MalNEt-induced increase in the Ca2+- or Mg2+-activated ATPase activity, measured in the absence of actin, can be attributed either to stabilization of filaments or to destabilization of the 10 S conformation, depending on the ionic strength of the assay. Modification of the second class of thiols is accompanied by a decrease in K+-EDTA-activated activity and an increase in Ca2+-activated activity measured above 0.3 M NaCl, where myosin neither forms filaments nor assumes the 10 S conformation. These slow changes are characteristic of blocking the SH-1 thiols of skeletal-muscle myosin, but in gizzard myosin are attributable to modification of a less reactive thiol, SH-C.


Assuntos
Adenosina Trifosfatases/metabolismo , Etilmaleimida/farmacologia , Músculo Liso/enzimologia , Miosinas/metabolismo , Actinas/metabolismo , Animais , ATPase de Ca(2+) e Mg(2+) , Radioisótopos de Carbono , Galinhas , Ativação Enzimática , Etilmaleimida/metabolismo , Moela das Aves/enzimologia , Cinética , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA