Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 8837, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893349

RESUMO

Microbes or parasites spread vector-borne diseases by mosquitoes without being affected themselves. Insecticides used in vector control produce a substantial problem for human health. This study synthesized zinc oxide nanoparticles (ZnO NPs) using Lawsonia inermis L. and were characterized by UV-vis, FT-IR, SEM with EDX, and XRD analysis. Green synthesized ZnO NPs were highly toxic against Anopheles stephensi, whose lethal concentrations values ranged from 5.494 ppm (I instar), 6.801 ppm (II instar), 9.336 ppm (III instar), 10.736 ppm (IV instar), and 12.710 ppm (pupae) in contrast to L. inermis treatment. The predation efficiency of the teleost fish Gambusia affinis and the copepod Mesocyclops aspericornis against A. stephensi was not affected by exposure at sublethal doses of ZnO NPs. The predatory potency for G. affinis was 45 (I) and 25.83% (IV), copepod M. aspericornis was 40.66 (I) and 10.8% (IV) while in an ZnO NPs contaminated environment, the predation by the fish G. affinis was boosted to 71.33 and 34.25%, and predation of the copepod M. aspericornis was 60.35 and 16.75%, respectively. ZnO NPs inhibited the growth of several microbial pathogens including the bacteria (Escherichia coli and Bacillus subtilis) and the fungi (Alternaria alternate and Aspergillus flavus), respectively. ZnO NPs decreased the cell viability of Hep-G2 with IC50 value of 21.63 µg/mL (R2 = 0.942; P < 0.001) while the concentration increased from 1.88 to 30 µg/mL. These outcomes support the use of L. inermis mediated ZnO NPs for mosquito control and drug development.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Lawsonia (Planta)/química , Nanopartículas Metálicas/química , Controle de Mosquitos/métodos , Extratos Vegetais/farmacologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Animais , Anopheles/efeitos dos fármacos , Anopheles/crescimento & desenvolvimento , Anti-Infecciosos/efeitos adversos , Antineoplásicos/efeitos adversos , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Larva/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química , Análise Espectral/métodos , Difração de Raios X
2.
Parasitol Int ; 65(3): 276-84, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26873539

RESUMO

The development of parasites and pathogens resistant to synthetic drugs highlighted the needing of novel, eco-friendly and effective control approaches. Recently, metal nanoparticles have been proposed as highly effective tools towards cancer cells and Plasmodium parasites. In this study, we synthesized silver nanoparticles (EW-AgNP) using Eudrilus eugeniae earthworms as reducing and stabilizing agents. EW-AgNP showed plasmon resonance reduction in UV-vis spectrophotometry, the functional groups involved in the reduction were studied by FTIR spectroscopy, while particle size and shape was analyzed by FESEM. The effect of EW-AgNP on in vitro HepG2 cell proliferation was measured using MTT assays. Apoptosis assessed by flow cytometry showed diminished endurance of HepG2 cells and cytotoxicity in a dose-dependent manner. EW-AgNP were toxic to Anopheles stephensi larvae and pupae, LC(50) were 4.8 ppm (I), 5.8 ppm (II), 6.9 ppm (III), 8.5 ppm (IV), and 15.5 ppm (pupae). The antiplasmodial activity of EW-AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. EW-AgNP IC(50) were 49.3 µg/ml (CQ-s) and 55.5 µg/ml (CQ-r), while chloroquine IC(50) were 81.5 µg/ml (CQ-s) and 86.5 µg/ml (CQ-r). EW-AgNP showed a valuable antibiotic potential against important pathogenic bacteria and fungi. Concerning non-target effects of EW-AgNP against mosquito natural enemies, the predation efficiency of the mosquitofish Gambusia affinis towards the II and II instar larvae of A. stephensi was 68.50% (II) and 47.00% (III), respectively. In EW-AgNP-contaminated environments, predation was boosted to 89.25% (II) and 70.75% (III), respectively. Overall, this research highlighted the EW-AgNP potential against hepatocellular carcinoma, Plasmodium parasites and mosquito vectors, with little detrimental effects on mosquito natural enemies.


Assuntos
Anopheles/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Malária/tratamento farmacológico , Nanopartículas Metálicas/uso terapêutico , Oligoquetos/química , Plasmodium falciparum/efeitos dos fármacos , Animais , Anopheles/parasitologia , Carcinoma Hepatocelular/parasitologia , Humanos , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/parasitologia , Larva , Neoplasias Hepáticas/parasitologia , Malária/parasitologia , Nanopartículas Metálicas/química , Pupa , Prata/química , Prata/farmacologia , Prata/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA