Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Epilepsia ; 62(9): 2113-2122, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34275140

RESUMO

OBJECTIVE: Drug-resistant temporal lobe epilepsy (TLE) is the most common type of epilepsy for which patients undergo surgery. Despite the best clinical judgment and currently available prediction algorithms, surgical outcomes remain variable. We aimed to build and to evaluate the performance of multidimensional Bayesian network classifiers (MBCs), a type of probabilistic graphical model, at predicting probability of seizure freedom after TLE surgery. METHODS: Clinical, neurophysiological, and imaging variables were collected from 231 TLE patients who underwent surgery at the University of California, San Francisco (UCSF) or the Montreal Neurological Institute (MNI) over a 15-year period. Postsurgical Engel outcomes at year 1 (Y1), Y2, and Y5 were analyzed as primary end points. We trained an MBC model on combined data sets from both institutions. Bootstrap bias corrected cross-validation (BBC-CV) was used to evaluate the performance of the models. RESULTS: The MBC was compared with logistic regression and Cox proportional hazards according to the area under the receiver-operating characteristic curve (AUC). The MBC achieved an AUC of 0.67 at Y1, 0.72 at Y2, and 0.67 at Y5, which indicates modest performance yet superior to what has been reported in the state-of-the-art studies to date. SIGNIFICANCE: The MBC can more precisely encode probabilistic relationships between predictors and class variables (Engel outcomes), achieving promising experimental results compared to other well-known statistical methods. Multisite application of the MBC could further optimize its classification accuracy with prospective data sets. Online access to the MBC is provided, paving the way for its use as an adjunct clinical tool in aiding pre-operative TLE surgical counseling.


Assuntos
Epilepsia do Lobo Temporal , Teorema de Bayes , Epilepsia Resistente a Medicamentos , Eletroencefalografia , Epilepsia do Lobo Temporal/diagnóstico , Epilepsia do Lobo Temporal/cirurgia , Humanos , Imageamento por Ressonância Magnética , Estudos Prospectivos , Estudos Retrospectivos , Resultado do Tratamento
2.
Med Phys ; 48(1): 342-353, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33107997

RESUMO

PURPOSE: Proton therapy is becoming an increasingly popular cancer treatment modality due to the proton's physical advantage in that it deposits the majority of its energy at the distal end of its track where the tumor is located. The proton range in a material is determined from the stopping power ratio (SPR) of the material. However, SPR is typically estimated based on a computed tomography (CT) scan which can lead to range estimation errors due to the difference in x-ray and proton interactions in matter, which can preclude the ability to utilize protons to their full potential. Applications of magnetic resonance imaging (MRI) in radiotherapy have increased over the past decade and using MRI to calculate SPR directly could provide numerous advantages. The purpose of this study was to develop a practical implementation of a novel multimodal imaging method for estimating SPR and compare the results of this method to physical measurements in which values were computed directly using tissue substitute materials fabricated to mimic skin, muscle, adipose, and spongiosa bone. METHODS: For both the multimodal imaging method and physical measurements, SPR was calculated using the Bethe-Bloch equation from values of relative electron density and mean ionization potential determined for each tissue. Parameters used to estimate SPR using the multimodal imaging method were extracted from Dixon water-only and (1 H) proton density-weighted zero echo time MRI sequences and CT, with both kVCT and MVCT used separately to evaluate the performance of each. For comparison, SPR was also computed from kVCT using the stoichiometric method, the current clinical standard. RESULTS: Results showed that our multimodal imaging approach using MRI with either kVCT or MVCT was in close agreement to SPR calculated from physical measurements for the four tissue substitutes evaluated. Using MRI and MVCT, SPR values estimated using our method were within 1% of physical measurements and were more accurate than the stoichiometric method for the tissue types studied. CONCLUSIONS: We have demonstrated the methodology for improved estimation of SPR using the proposed multimodal imaging framework.


Assuntos
Terapia com Prótons , Tomografia Computadorizada por Raios X , Elétrons , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Prótons , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA