Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 28(2): 270-5, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26550771

RESUMO

A bioinspired active anode with a suction effect is demonstrated for microbial fuel cells by constructing polypyrrole (PPy) nanotubular arrays on carbon textiles. The oxygen in the inner space of the nanosucker can be depleted by micro-organisms with the capability of facul-tative respiration, forming a vacuum, which then activates the electrode to draw the microorganism by suction and thus improve the bioelectricity generation.


Assuntos
Fontes de Energia Bioelétrica , Eletrodos , Nanoestruturas , Nanotecnologia/instrumentação , Animais , Benzenossulfonatos/química , Materiais Biomiméticos/química , Carbono/química , Desenho de Equipamento , Nanoestruturas/química , Nanotecnologia/métodos , Octopodiformes , Oxigênio/química , Polímeros/química , Pirróis/química , Têxteis , Vácuo
2.
Small ; 11(40): 5409-15, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26294393

RESUMO

A flexible, transparent, chemical gas sensor is assembled from a transparent conducting film of carbon nanotube (CNT) networks that are coated with hierarchically nanostructured polyaniline (PANI) nanorods. The nanocomposite film is synthesized by in-situ, chemical oxidative polymerization of aniline in a functional multiwalled CNT (FMWCNT) suspension and is simultaneously deposited onto a flexible polyethylene terephthalate (PET) substrate. An as-prepared flexible transparent chemical gas sensor exhibits excellent transparency of 85.0% at 550 nm using the PANI/FMWCNT nanocomposite film prepared over a reaction time of 8 h. The sensor also shows good flexibility, without any obvious decrease in performance after 500 bending/extending cycles, demonstrating high-performance, portable gas sensing at room temperature. This superior performance could be attributed to the improved electron transport and collection due to the CNTs, resulting in reliable and efficient sensing, as well as the high surface-to-volume ratio of the hierarchically nanostructured composites. The excellent transparency, improved sensing performance, and superior flexibility of the device, may enable the integration of this simple, low-cost, gas sensor into handheld flexible transparent electronic circuitry and optoelectronic devices.

3.
Adv Sci (Weinh) ; 2(11): 1500118, 2015 11.
Artigo em Inglês | MEDLINE | ID: mdl-27980914

RESUMO

Originating from primary tumors and penetrating into blood circulation, circulating tumor cells (CTCs) play a vital role in understanding the biology of metastasis and have great potential for early cancer diagnosis, prognosis and personalized therapy. By exploiting the specific biophysical and biochemical properties of CTCs, various material interfaces have been developed for the capture and detection of CTCs from blood. However, due to the extremely low number of CTCs in peripheral blood, there exists a need to improve the efficiency and specificity of the CTC capture and detection. In this regard, a critical review of the numerous reports of advanced platforms for highly efficient and selective capture of CTCs, which have been spurred by recent advances in nanotechnology and microfabrication, is essential. This review gives an overview of unique biophysical and biochemical properties of CTCs, followed by a summary of the key material interfaces recently developed for improved CTC capture and detection, with focus on the use of microfluidics, nanostructured substrates, and miniaturized nuclear magnetic resonance-based systems. Challenges and future perspectives in the design of material interfaces for capture and detection of CTCs in clinical applications are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA