Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38948715

RESUMO

The distal bronchioles in Idiopathic Pulmonary Fibrosis (IPF) exhibit histopathological abnormalities such as bronchiolization, peribronchiolar fibrosis and honeycomb cysts that contribute to the overall architectural remodeling of lung tissue seen in the disease. Here we describe an additional histopathologic finding of epithelial desquamation in patients with IPF, wherein epithelial cells detach from the basement membrane of the distal bronchioles. To understand the mechanism driving this pathology, we performed spatial transcriptomics of the epithelial cells and spatial proteomics of the basement membrane of the distal bronchioles from IPF patients and patients with no prior history of lung disease. Our findings reveal a downregulation of cell junctional components, upregulation of epithelial-mesenchymal transition signatures and dysregulated basement membrane matrix in IPF distal bronchioles, facilitating epithelial desquamation. Further, functional assays identified regulation between Collagen IV in the matrix, and the junctional genes JUP and PLEC , that is crucial for maintaining distal bronchiolar homeostasis. In IPF, this balanced regulation between matrix and cell-junctions is disrupted, leading to loss of epithelial adhesion, peribronchiolar fibrosis and epithelial desquamation. Overall, our study suggests that in IPF the interplay between the loss of cell junctions and a dysregulated matrix results in desquamation of distal bronchiolar epithelium and lung remodeling, exacerbating the disease. One Sentence Summary: Two-way regulation of cell junctional proteins and matrix proteins drives cellular desquamation and fibrosis in the distal bronchioles of patients with Idiopathic Pulmonary Fibrosis.

2.
Nat Aging ; 3(1): 64-81, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36743663

RESUMO

Aging is the predominant risk factor for atherosclerosis, the leading cause of death. Rare smooth muscle cell (SMC) progenitors clonally expand giving rise to up to ~70% of atherosclerotic plaque cells; however, the effect of age on SMC clonality is not known. Our results indicate that aged bone marrow (BM)-derived cells non-cell autonomously induce SMC polyclonality and worsen atherosclerosis. Indeed, in myeloid cells from aged mice and humans, TET2 levels are reduced which epigenetically silences integrin ß3 resulting in increased tumor necrosis factor [TNF]-α signaling. TNFα signals through TNF receptor 1 on SMCs to promote proliferation and induces recruitment and expansion of multiple SMC progenitors into the atherosclerotic plaque. Notably, integrin ß3 overexpression in aged BM preserves dominance of the lineage of a single SMC progenitor and attenuates plaque burden. Our results demonstrate a molecular mechanism of aged macrophage-induced SMC polyclonality and atherogenesis and suggest novel therapeutic strategies.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Camundongos , Animais , Idoso , Placa Aterosclerótica/metabolismo , Medula Óssea/metabolismo , Integrina beta3/metabolismo , Aterosclerose/genética , Miócitos de Músculo Liso , Músculo Liso/metabolismo
3.
Nat Commun ; 12(1): 7179, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893592

RESUMO

During lung fibrosis, the epithelium induces signaling to underlying mesenchyme to generate excess myofibroblasts and extracellular matrix; herein, we focus on signaling in the mesenchyme. Our studies indicate that platelet-derived growth factor receptor (PDGFR)-ß+ cells are the predominant source of myofibroblasts and Kruppel-like factor (KLF) 4 is upregulated in PDGFR-ß+ cells, inducing TGFß pathway signaling and fibrosis. In fibrotic lung patches, KLF4 is down-regulated, suggesting KLF4 levels decrease as PDGFR-ß+ cells transition into myofibroblasts. In contrast to PDGFR-ß+ cells, KLF4 reduction in α-smooth muscle actin (SMA)+ cells non-cell autonomously exacerbates lung fibrosis by inducing macrophage accumulation and pro-fibrotic effects of PDGFR-ß+ cells via a Forkhead box M1 to C-C chemokine ligand 2-receptor 2 pathway. Taken together, in the context of lung fibrosis, our results indicate that KLF4 plays opposing roles in PDGFR-ß+ cells and SMA+ cells and highlight the importance of further studies of interactions between distinct mesenchymal cell types.


Assuntos
Fator 4 Semelhante a Kruppel/genética , Fator 4 Semelhante a Kruppel/metabolismo , Pulmão/metabolismo , Células-Tronco Mesenquimais/metabolismo , Miofibroblastos/metabolismo , Animais , Proliferação de Células , Modelos Animais de Doenças , Regulação para Baixo , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/metabolismo , Fibrose , Humanos , Pulmão/patologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Doenças Respiratórias/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
4.
Nat Commun ; 9(1): 2073, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802249

RESUMO

Smooth muscle cells (SMCs) play a key role in atherogenesis. However, mechanisms regulating expansion and fate of pre-existing SMCs in atherosclerotic plaques remain poorly defined. Here we show that multiple SMC progenitors mix to form the aorta during development. In contrast, during atherogenesis, a single SMC gives rise to the smooth muscle-derived cells that initially coat the cap of atherosclerotic plaques. Subsequently, highly proliferative cap cells invade the plaque core, comprising the majority of plaque cells. Reduction of integrin ß3 (Itgb3) levels in SMCs induces toll-like receptor 4 expression and thereby enhances Cd36 levels and cholesterol-induced transdifferentiation to a macrophage-like phenotype. Global Itgb3 deletion or transplantation of Itgb3(-/-) bone marrow results in recruitment of multiple pre-existing SMCs into plaques. Conditioned medium from Itgb3-silenced macrophages enhances SMC proliferation and migration. Together, our results suggest SMC contribution to atherogenesis is regulated by integrin ß3-mediated pathways in both SMCs and bone marrow-derived cells.


Assuntos
Aterosclerose/patologia , Proliferação de Células , Integrina beta3/fisiologia , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/patologia , Animais , Aorta/citologia , Aorta/patologia , Aterosclerose/cirurgia , Transplante de Medula Óssea , Movimento Celular , Transdiferenciação Celular , Células Cultivadas , Colesterol/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/patologia , Placa Aterosclerótica/cirurgia
5.
Dev Biol ; 393(1): 93-108, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24973580

RESUMO

Tubes with distinct shapes and sizes are critical for the proper function of many tubular organs. Here we describe a unique phenotype caused by the loss of a novel, evolutionarily-conserved, Drosophila Smad-like protein, Expansion. In expansion mutants, unicellular and intracellular tracheal branches develop bubble-like cysts with enlarged apical membranes. Cysts in unicellular tubes are enlargements of the apical lumen, whereas cysts in intracellular tubes are cytoplasmic vacuole-like compartments. The cyst phenotype in expansion mutants is similar to, but weaker than, that observed in double mutants of Drosophila type III receptor tyrosine phosphatases (RPTPs), Ptp4E and Ptp10D. Ptp4E and Ptp10D negatively regulate the receptor tyrosine kinase (RTK) pathways, especially epithelial growth factor receptor (EGFR) and fibroblast growth factor receptor/breathless (FGFR, Btl) signaling to maintain the proper size of unicellular and intracellular tubes. We show Exp genetically interacts with RTK signaling, the downstream targets of RPTPs. Cyst size and number in expansion mutants is enhanced by increased RTK signaling and suppressed by reduced RTK signaling. Genetic interaction studies strongly suggest that Exp negatively regulates RTK (EGFR, Btl) signaling to ensure proper tube sizes. Smad proteins generally function as intermediate components of the transforming growth factor-ß (TGF-ß, DPP) signaling pathway. However, no obvious genetic interaction between expansion and TGF-ß (DPP) signaling was observed. Therefore, Expansion does not function as a typical Smad protein. The expansion phenotype demonstrates a novel role for Smad-like proteins in epithelial tube formation.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Morfogênese/genética , Proteínas Smad/fisiologia , Traqueia/embriologia , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Receptores ErbB/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Receptores de Peptídeos de Invertebrados/metabolismo , Transdução de Sinais , Proteínas Smad/genética , Traqueia/anatomia & histologia , Fator de Crescimento Transformador beta/metabolismo
6.
Cell Tissue Res ; 354(2): 343-54, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23824100

RESUMO

The size of various tubes within tubular organs such as the lung, vascular system and kidney must be finely tuned for the optimal delivery of gases, nutrients, waste and cells within the entire organism. Aberrant tube sizes lead to devastating human illnesses, such as polycystic kidney disease, fibrocystic breast disease, pancreatic cystic neoplasm and thyroid nodules. However, the underlying mechanisms that are responsible for tube-size regulation have yet to be fully understood. Therefore, no effective treatments are available for disorders caused by tube-size defects. Recently, the Drosophila tracheal system has emerged as an excellent in vivo model to explore the fundamental mechanisms of tube-size regulation. Here, we discuss the role of the apical luminal matrix, cell polarity and signaling pathways in regulating tube size in Drosophila trachea. Previous studies of the Drosophila tracheal system have provided general insights into epithelial tube morphogenesis. Mechanisms that regulate tube size in Drosophila trachea could be well conserved in mammalian tubular organs. This knowledge should greatly aid our understanding of tubular organogenesis in vertebrates and potentially lead to new avenues for the treatment of human disease caused by tube-size defects.


Assuntos
Drosophila/anatomia & histologia , Drosophila/crescimento & desenvolvimento , Traqueia/anatomia & histologia , Traqueia/crescimento & desenvolvimento , Animais , Polaridade Celular , Proteínas de Drosophila/metabolismo , Humanos , Morfogênese , Transdução de Sinais , Traqueia/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA