Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Steroid Biochem Mol Biol ; 150: 46-53, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25800721

RESUMO

Vitamin A is known to influence post-natal bone content, with excess intake being associated with reduced bone mineral density and increased fracture risk. Despite this, the roles retinoids play in regulating osteoclastogenesis, particularly in vivo, remain unresolved. This study therefore aimed to determine the effect of loss of retinoic acid receptors (RAR)α or RARγ on bone mass (analyzed by histomorphometry and dual-energy X-ray absorptiometry) and osteoclastogenesis in mice in vivo. RARγ null mice had significantly less trabecular bone at 8 weeks of age compared to wildtype littermates. In contrast, no change in trabecular bone mass was detected in RARα null mice at this age. Further histomorphometric analysis revealed a significantly greater osteoclast surface in bones from 8-week-old RARγ null male mice. This in vivo effect was cell lineage autonomous, and was associated with increased osteoclastogenesis in vitro from hematopoietic cells obtained from 8-week-old RARγ null male mice. The use of highly selective agonists in RANKL-induced osteoclast differentiation of wild type mouse whole bone marrow cells and RAW264.7 cells in vitro showed a stronger inhibitory effect of RARγ than RARα agonists, suggesting that RARγ is a more potent inhibitor of osteoclastogenesis. Furthermore, NFAT activation was also more strongly inhibited by RARγ than RARα agonists. While RARα and RARγ antagonists did not significantly affect osteoclast numbers in vitro, larger osteoclasts were observed in cultures stimulated with the antagonists, suggesting increased osteoclast fusion. Further investigation into the effect of retinoids in vivo revealed that oral administration of 5mg/kg/day ATRA for 10 days protected against bone loss induced by granulocyte colony-stimulating factor (G-CSF) by inhibiting the pro-osteoclastogenic action of G-CSF. Collectively, our data indicates a physiological role for RARγ as a negative regulator of osteoclastogenesis in vivo and in vitro, and reveals distinct influences of RARα and RARγ in bone structure regulation.


Assuntos
Reabsorção Óssea/genética , Osso e Ossos/metabolismo , Osteoclastos/metabolismo , Receptores do Ácido Retinoico/genética , Tretinoína/farmacologia , Animais , Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Reabsorção Óssea/prevenção & controle , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Diferenciação Celular , Regulação Neoplásica da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos/farmacologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Cultura Primária de Células , Ligante RANK/genética , Ligante RANK/metabolismo , Receptores do Ácido Retinoico/agonistas , Receptores do Ácido Retinoico/antagonistas & inibidores , Receptores do Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico , Transdução de Sinais , Tretinoína/análogos & derivados , Receptor gama de Ácido Retinoico
2.
Development ; 135(4): 677-85, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18199582

RESUMO

In most animals, the gonads develop symmetrically, but most birds develop only a left ovary. A possible role for estrogen in this asymmetric ovarian development has been proposed in the chick, but the mechanism underlying this process is largely unknown. Here, we identify the molecular mechanism responsible for this ovarian asymmetry. Asymmetric PITX2 expression in the left presumptive gonad leads to the asymmetric expression of the retinoic-acid (RA)-synthesizing enzyme, RALDH2, in the right presumptive gonad. Subsequently, RA suppresses expression of the nuclear receptors Ad4BP/SF-1 and estrogen receptor alpha in the right ovarian primordium. Ad4BP/SF-1 expressed in the left ovarian primordium asymmetrically upregulates cyclin D1 to stimulate cell proliferation. These data suggest that early asymmetric expression of PITX2 leads to asymmetric ovarian development through up- or downregulation of RALDH2, Ad4BP/SF-1, estrogen receptor alpha and cyclin D1.


Assuntos
Padronização Corporal , Ovário/embriologia , Animais , Padronização Corporal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Ciclina D1/genética , Ciclina D1/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Modelos Biológicos , Ovário/citologia , Ovário/efeitos dos fármacos , Ovário/enzimologia , Ácido Retinoico 4 Hidroxilase , Processos de Determinação Sexual , Transdução de Sinais/efeitos dos fármacos , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tretinoína/farmacologia , Proteína Homeobox PITX2
3.
Transplantation ; 83(4): 375-84, 2007 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-17318068

RESUMO

BACKGROUND: Failure to mobilize adequate numbers of hematopoietic stem and progenitor cells (HSPC) is an important clinical problem. Since bone marrow (BM) neutrophils play a central role in HSPC mobilization, we hypothesized that granulocyte colony-stimulating factor (G-CSF)-mediated mobilization would be enhanced by further expanding the size of the BM granulocyte pool. METHODS: We tested the potential of the retinoic acid receptor alpha (RARalpha) specific agonist VTP195183, and the pan-RAR agonist all-trans retinoic acid (ATRA), to enhance G-CSF-mediated mobilization of HSPC, in two mouse strains. RESULTS: Pretreatment of mice with VTP195183 significantly increased the number of leukocytes, colony-forming cells, and early engrafting hematopoietic stem cells (HSC) mobilized in the blood in response to G-CSF. In contrast, ATRA had only a marginal effect on G-CSF-induced mobilization. HSPC mobilization synergy between VTP195183 and G-CSF occurred only when mice were preconditioned with VTP195183 prior to G-CSF. This preconditioning was shown to increase the numbers of granulocyte/macrophage progenitors in the BM. Treatment with VTP195183 and G-CSF was accompanied by enhanced levels of active neutrophil proteases in the BM extracellular fluid compared to G-CSF treatment alone. CONCLUSIONS: VTP195183 treatment increases the numbers of immature granulocyte progenitors in BM and subsequently synergizes to enhance G-CSF-mediated mobilization of HSPC. These data demonstrate a novel approach to improve G-CSF-induced mobilization by accelerating granulocyte maturation in the BM. These findings are currently being tested in a clinical trial of VTP195183 plus G-CSF for mobilization of HSPC in human patients.


Assuntos
Movimento Celular , Fator Estimulador de Colônias de Granulócitos/agonistas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Receptores do Ácido Retinoico/agonistas , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Células Cultivadas , Fator Estimulador de Colônias de Granulócitos/metabolismo , Guanosina Monofosfato/metabolismo , Humanos , Camundongos , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/enzimologia , Peptídeo Hidrolases/metabolismo , Receptores do Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico , Fatores de Tempo , Tretinoína/farmacologia
4.
J Cell Physiol ; 209(3): 854-65, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16972258

RESUMO

N-(4-hydroxyphenyl)retinamide (4HPR, fenretinide), a retinoic acid (RA) derivative and a potential cancer preventive agent, is known to exert its chemotherapeutic effects in cancer cells through induction of apoptosis. Earlier work from our laboratory has shown that relatively low concentrations of 4HPR induce neuronal differentiation of cultured human retinal pigment epithelial (ARPE-19) cells (Chen et al., 2003, J Neurochem 84:972-981). However, at higher concentrations of 4HPR, these cells showed morphological changes including cell shrinkage and cell death. Here we demonstrate that ARPE-19 cells treated with 4HPR exhibit a dose- and time-dependent induction of apoptosis as evidenced by morphological changes, mono- and oligonucleosome generation, and increased activity of caspases 2 and 3. The 4HPR-induced apoptosis as well as the activation of caspases 2 and 3 were blocked by both retinoic acid receptors (RAR) pan-antagonists, AGN193109 and AGN194310, and by an RARalpha-specific antagonist AGN194301. 4HPR treatment also increased reactive oxygen species (ROS) generation in ARPE-19 cells in a time-dependent manner as determined from the oxidation of 2',7'-dichlorofluorescin. In addition, the increase in the expression of heme oxygenase-1 (HO-1), a stress response protein, and the growth arrest and DNA damage-inducible transcription factor 153 (Gadd153) in response to the ROS generation were also blocked by these receptor antagonists. Pyrrolidine dithiocarbamate (PDTC), a free-radical scavenger, inhibited 4HPR-induced ROS generation, the expression of its downstream mediator, Gadd153, and apoptosis in the pretreated cells. Therefore, our results, clearly demonstrate that 4HPR induces apoptosis in ARPE-19 cells and that RARs mediate this process by regulating ROS generation as well as the expression of Gadd153 and HO-1.


Assuntos
Apoptose/fisiologia , Células Epiteliais , Fenretinida/farmacologia , Heme Oxigenase-1/metabolismo , Epitélio Pigmentado Ocular/citologia , Espécies Reativas de Oxigênio/metabolismo , Receptores do Ácido Retinoico/metabolismo , Fator de Transcrição CHOP/metabolismo , Anticarcinógenos/farmacologia , Antioxidantes/metabolismo , Caspase 2/genética , Caspase 2/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Ativação Enzimática , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Heme Oxigenase-1/genética , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Receptores do Ácido Retinoico/antagonistas & inibidores , Receptores do Ácido Retinoico/genética , Fator de Transcrição CHOP/genética
5.
J Immunol ; 175(12): 7916-29, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16339527

RESUMO

Vitamin A affects many aspects of T lymphocyte development and function. The vitamin A metabolites all-trans- and 9-cis-retinoic acid regulate gene expression by binding to the retinoic acid receptor (RAR), while 9-cis-retinoic acid also binds to the retinoid X receptor (RXR). Naive DO11.10 T lymphocytes expressed mRNA and protein for RAR-alpha, RXR-alpha, and RXR-beta. DNA microarray analysis was used to identify RXR-responsive genes in naive DO11.10 T lymphocytes treated with the RXR agonist AGN194204. A total of 128 genes was differentially expressed, including 16 (15%) involved in cell growth or apoptosis. Among these was Bcl2a1, an antiapoptotic Bcl2 family member. Quantitative real-time PCR analysis confirmed this finding and demonstrated that Bcl2a1 mRNA expression was significantly greater in nonapoptotic than in apoptotic T lymphocytes. The RXR agonist 9-cis-retinoic acid also increased Bcl2a1 expression, although all-trans-retinoic acid and ligands for other RXR partner receptors did not. Treatment with AGN194204 and 9-cis-retinoic acid significantly decreased apoptosis measured by annexin V staining but did not affect expression of Bcl2 and Bcl-xL. Bcl2a1 promoter activity was examined using a luciferase promoter construct. Both AGN194204 and 9-cis-retinoic acid significantly increased luciferase activity. In summary, these data demonstrate that RXR agonists increase Bcl2a1 promoter activity and increase expression of Bcl2a1 in naive T lymphocytes but do not affect Bcl2 and Bcl-xL expression in naive T lymphocytes. Thus, this effect on Bcl2a1 expression may account for the decreased apoptosis seen in naive T lymphocytes treated with RXR agonists.


Assuntos
Apoptose/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Receptores X de Retinoides/agonistas , Linfócitos T/citologia , Alitretinoína , Animais , Apoptose/genética , Células Cultivadas , Ácidos Graxos Insaturados/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Camundongos , Camundongos Knockout , Antígenos de Histocompatibilidade Menor , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Linfócitos T/efeitos dos fármacos , Tetra-Hidronaftalenos/farmacologia , Tretinoína/farmacologia , Proteína bcl-X/genética
6.
Clin Cancer Res ; 11(13): 4851-6, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16000583

RESUMO

We have previously identified the retinoid X receptor-alpha (RXRalpha) as an insulin-like growth factor binding protein-3 (IGFBP-3) nuclear binding partner, which is required for IGFBP-3-induced apoptosis. In the current study, we investigated the biological interactions of the RXR ligand, VTP194204 and rhIGFBP-3, in vitro and in vivo. In vitro, IGFBP-3 and VTP194204 individually induced apoptosis, and suppressed cell growth in prostate cancer cell lines in an additive manner. In vivo, LAPC-4 xenograft-bearing severe combined immunodeficiency mice treated daily with saline, IGFBP-3, and/or VTP194204 for 3 weeks showed no effect of individual treatments with IGFBP-3 or VTP194204 on tumor growth. However, the combination of IGFBP-3 and VTP194204 treatments inhibited tumor growth by 50% and induced a significant reduction in serum prostate-specific antigen levels. In terminal nucleotidyl transferase-mediated nick end labeling immunohistochemistry of LAPC-4 xenografts, there was modest induction of apoptosis with either IGFBP-3 or VTP194204 individual treatment, but combination therapy resulted in massive cell death, indicating that IGFBP-3 and VTP194204 have a synergistic effect in preventing tumor growth by apoptosis induction. In summary, this is an initial description of the successful therapeutic use of IGFBP-3 as a cancer therapy in vivo, and shows that combination treatment of IGFBP-3 and RXR ligand has a synergistic effect on apoptosis induction leading to substantial inhibition of prostate cancer xenograft growth. Taken together, these observations suggest that combination therapy with IGFBP-3 and RXR ligands may have therapeutic potential for prostate cancer treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Retinoides/farmacologia , Animais , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/administração & dosagem , Ligantes , Masculino , Camundongos , Camundongos SCID , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/sangue , Neoplasias da Próstata/patologia , Receptores X de Retinoides/metabolismo , Retinoides/administração & dosagem , Retinoides/metabolismo , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Oncogene ; 24(26): 4257-70, 2005 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-15856029

RESUMO

Retinoid-related molecules are important potential agents for the treatment of cancer. In the present study, we test the effect of a novel retinoid-related ligand, AGN193198 (4-[3-(1-heptyl-4,4-dimethyl-2-oxo-1,2,3,4-tetrahydroquinolin-6-yl)-3-oxo-prophenyl] benzoic acid), on pancreatic cancer cell proliferation and survival. AGN193198 treatment reduces BxPC-3 cell proliferation more efficiently than high-affinity retinoid acid receptor (RAR)- or retinoid X receptor (RXR)-selective retinoids. Moreover, AGN193198 does not activate transcription from RAR or RXR response elements and its effects on cell survival are not reversed by treatment with RAR- or RXR receptor-selective antagonists. These results suggest that the AGN193198-dependent inhibition of BxPC-3 cell function is not mediated via activation of the classical retinoid receptors. Cell cycle analysis of AGN193198-treated BxPC-3 cells indicates that AGN193198 causes accumulation of cells in G2/M. This change is associated with a marked reduction in regulators of S (cyclin A, cyclin-dependent kinase (cdk)2), G2/M (cyclin B1, cdk1, cdc25c) and G1 (cyclin D1, cyclin E, cdk2, cdk4) phase, and an increase in p21 and p27 level. Kinases assays reveal that cdk1, cdk2 and cdk4 activity are suppressed in AGN193198-treated cells. In addition, reduced cell proliferation is associated with enhanced procaspase (3, 8 and 9) and PARP cleavage. Z-VAD-FMK, a pancaspase inhibitor, inhibits AGN193198-dependent caspase activation and attenuates cell death. Z-VAD-FMK inhibits PARP cleavage, but does not alter the AGN193198-dependent reduction in cell cycle regulatory protein expression and activity, suggesting that caspase activation and suppression of cell cycle regulatory protein levels are independent processes. AGN193198 produces similar responses in other pancreatic cancer cell lines including AsPC-1 and MIA PaCa-2. These studies suggest that AGN193198 may be useful for the treatment of pancreatic cancer.


Assuntos
Apoptose/efeitos dos fármacos , Caspases/farmacologia , Proteínas de Ciclo Celular/farmacologia , Neoplasias Pancreáticas/patologia , Quinolinas/farmacologia , Receptores do Ácido Retinoico/efeitos dos fármacos , Receptores do Ácido Retinoico/fisiologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células , Humanos , Transcrição Gênica , Células Tumorais Cultivadas
8.
Oncogene ; 24(18): 2963-72, 2005 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-15846304

RESUMO

Type I transglutaminase is a plasma membrane-anchored intracellular protein-protein crosslinking enzyme that is responsible for assembly of the keratinocyte cornified envelope during terminal keratinocyte differentiation. We recently described a novel protein, TIG3, that when expressed in keratinocytes causes increased transglutaminase activity and keratinocyte cell death. However, the mechanism of activation of transglutaminase by TIG3 is not known. We now extend our previous study and show that full-length TIG3 forms a complex with type I transglutaminase that is demonstrated by TIG3-transglutaminase co-precipitation. We also demonstrate that treating TIG3-expressing cells with monodansyl cadaverine, a competitive transglutaminase substrate, attenuates the TIG3-dependent response, suggesting that transglutaminase is an important mediator of TIG3 action. These findings suggest that TIG3 forms a complex with transglutaminase resulting in transglutaminase activation and that transglutaminase activity is required for the TIG3-dependent biological response.


Assuntos
Ativadores de Enzimas/metabolismo , Receptores do Ácido Retinoico/metabolismo , Transglutaminases/metabolismo , Queratinócitos/metabolismo , Mutação
9.
J Cell Biochem ; 94(6): 1175-89, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15696548

RESUMO

Steroid sulphatase is a key enzyme in the biosynthesis of bioactive estrogens and androgens from highly abundant inactive circulating sulphated steroid precursors. Little is known about how the expression/activity of this enzyme is regulated. In this article, we show that of 1alpha,25(OH)2D3 stimulates an increase steroid sulphatase activity in the HL60 myeloid leukaemic cell line that is inhibited by a specific nuclear VDR (VDRnuc) antagonist and unaffected by plasma membrane-associated vitamin D receptor (VDRmem) agonists and antagonists. 1alpha,25(OH)2D3-mediated up-regulation of steroid sulphatase activity in HL60 cells was augmented by RXR agonists, blocked by RXR-specific antagonists, and RAR specific agonists and antagonists had no effect. In contrast, the 1alpha,25(OH)2D3-mediated up-regulation of steroid sulphatase activity in the NB4 myeloid leukaemic cell line was unaffected by the specific VDRnuc and RXR antagonists, but was blocked by a VDRmem-specific antagonist and was increased by VDRmem-specific agonists. The findings reveal that VDRnuc-RXR-heterodimers play a key role in the 1alpha,25(OH)2D3-mediated up-regulation of steroid sulphatase activity in HL60 cells. However, in NB4 cells, VDRnuc-derived signals do not play an obligatory role, and non-genomic VDRmem-derived signals are important.


Assuntos
Calcitriol/farmacologia , Receptores de Calcitriol/fisiologia , Esteril-Sulfatase/metabolismo , Linhagem Celular Tumoral , Colesterol/metabolismo , Ativação Enzimática , Humanos , Lipídeos de Membrana/metabolismo , Receptores de Calcitriol/antagonistas & inibidores , Regulação para Cima
10.
Int J Cancer ; 115(6): 917-23, 2005 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-15729717

RESUMO

The novel synthetic retinoid-related molecule 4-[3-(1-heptyl-4,4-dimethyl-2-oxo-1,2,3,4-tetrahydroquinolin-6-yl)-3-oxo-propenyl]benzoic acid (AGN193198) neither binds effectively to retinoic acid receptors (RARs) and retinoid X receptors (RXRs) nor transactivates in RAR- and RXR-mediated reporter assays. Even so, AGN193198 is potent in inducing apoptosis in human prostate and breast carcinoma cells (Keedwell et al., Cancer Res 2004;64:3302-12). Here, we extend these findings to show that AGN193198 potently and rapidly induces apoptosis in bladder carcinoma cell lines. One micromolar of AGN193198 completely abolished the growth of the transitional cell carcinoma lines UM-UC-3 and J82, and the squamous cell carcinoma line SCaBER; the transitional cell papilloma line RT-4 was slightly less sensitive to the growth inhibitory effect of AGN193198. Treated cells accumulated in the G2M phase of the cell cycle. This was accompanied by apoptosis, as revealed by staining cells for exposure of phosphatidylserine at their surface (binding of Annexin V) and FACS analysis of propidium iodide labeled cells. As reported for prostate cancer cells, AGN193198 provoked rapid activation of caspases-3 (by 6 hr), -8 (by 16 hr) and -9 (by 6 hr) in bladder cancer cells. These findings suggest that AGN193198 and related compounds, whose mechanism of action does not appear to involve RARs and RXRs, may be useful in the treatment of bladder cancer.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma de Células de Transição/patologia , Papiloma/patologia , Quinolinas/farmacologia , Neoplasias da Bexiga Urinária/patologia , Antineoplásicos/farmacologia , Divisão Celular/efeitos dos fármacos , Humanos , Receptores do Ácido Retinoico/metabolismo , Receptores X de Retinoides/metabolismo , Células Tumorais Cultivadas
11.
J Biol Chem ; 279(44): 46204-12, 2004 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-15302862

RESUMO

The obesity epidemic in industrialized countries is associated with increases in cardiovascular disease (CVD) and certain types of cancer. In animal models, caloric restriction (CR) suppresses these diseases as well as chemical-induced tissue damage. These beneficial effects of CR overlap with those altered by agonists of nuclear receptors (NR) under control of the fasting-responsive transcriptional co-activator, peroxisome proliferator-activated co-activator 1alpha (PGC-1alpha). In a screen for compounds that mimic CR effects in the liver, we found statistically significant overlaps between the CR transcript profile in wild-type mice and the profiles altered by agonists of lipid-activated NR, including peroxisome proliferator-activated receptor alpha (PPARalpha), liver X receptor, and their obligate heterodimer partner, retinoid X receptor. The overlapping genes included those involved in CVD (lipid metabolism and inflammation) and cancer (cell fate). Based on this overlap, we hypothesized that some effects of CR are mediated by PPARalpha. As determined by transcript profiling, 19% of all gene expression changes in wild-type mice were dependent on PPARalpha, including Cyp4a10 and Cyp4a14, involved in fatty acid omega-oxidation, acute phase response genes, and epidermal growth factor receptor but not increases in PGC-1alpha. CR protected the livers of wild-type mice from damage induced by thioacetamide, a liver toxicant and hepatocarcinogen. CR protection was lost in PPARalpha-null mice due to inadequate tissue repair. These results demonstrate that PPARalpha mediates some of the effects of CR and indicate that a pharmacological approach to mimicking many of the beneficial effects of CR may be possible.


Assuntos
Restrição Calórica , Metabolismo dos Lipídeos , PPAR alfa/fisiologia , Animais , Doenças Cardiovasculares/etiologia , Divisão Celular , Proteínas de Ligação a DNA , Feminino , Homeostase , Fígado/efeitos dos fármacos , Fígado/metabolismo , Receptores X do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Nucleares Órfãos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Receptores Citoplasmáticos e Nucleares/fisiologia , Fatores de Risco , Transativadores/fisiologia , Fatores de Transcrição
12.
Breast Cancer Res ; 6(5): R546-55, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15318936

RESUMO

INTRODUCTION: Certain lipids have been shown to be ligands for a subgroup of the nuclear hormone receptor superfamily known as the peroxisome proliferator-activated receptors (PPARs). Ligands for these transcription factors have been used in experimental cancer therapies. PPARs heterodimerize and bind DNA with retinoid X receptors (RXRs), which have homology to other members of the nuclear receptor superfamily. Retinoids have been found to be effective in treating many types of cancer. However, many breast cancers become resistant to the chemotherapeutic effects of these drugs. Recently, RXR-selective ligands were discovered that inhibited proliferation of all-trans retinoic acid resistant breast cancer cells in vitro and caused regression of the disease in animal models. There are few published studies on the efficacy of combined therapy using PPAR and RXR ligands for breast cancer prevention or treatment. METHODS: We determined the effects of selective PPAR and RXR ligands on established human breast cancer cell lines in vitro. RESULTS: PPAR-alpha and PPAR-gamma ligands induced apoptotic and antiproliferative responses in human breast cancer cell lines, respectively, which were associated with specific changes in gene expression. These responses were potentiated by the RXR-selective ligand AGN194204. Interestingly, RXR-alpha-overexpressing retinoic acid resistant breast cancer cell lines were more sensitive to the effects of the RXR-selective compound. CONCLUSION: RXR-selective retinoids can potentiate the antiproliferative and apoptotic responses of breast cancer cell lines to PPAR ligands.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Ligantes , Receptores Citoplasmáticos e Nucleares , Receptores do Ácido Retinoico , Fatores de Transcrição , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Resistencia a Medicamentos Antineoplásicos/genética , Ácidos Graxos Insaturados/farmacologia , Expressão Gênica , Humanos , Proteínas Nucleares , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Receptores X de Retinoides , Tetra-Hidronaftalenos/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tretinoína/farmacologia , Ácido gama-Linolênico/farmacologia
13.
Leuk Lymphoma ; 45(5): 1025-35, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15291363

RESUMO

The CD34+ CD38- subset of human hematopoietic stem cells are crucial for long-term ex-vivo expansion; conditions that decreased this specific sub-population reduced the self-renewal capacity and shortened the duration of the proliferative phase of the culture. Retinoids, such as all-trans retinoic acid (ATRA), have been shown to induce CD38 expression. ATRA present in serum may be responsible for the high CD38 of cells grown in serum-containing medium. In the present study we analyzed the effects of AGN 194310, a retinoic acid receptor pan-antagonist, on CD38 expression of human hematopoietic cells. Normal cells (cord blood derived CD34+ cells) and abnormal cells (myeloid leukemic lines) were studied when grown in either serum-containing or serum-free media. The results showed that both serum and ATRA enhanced differentiation and, thereby, reduced the proportion of CD34+ CD38- cells and total CD34+ cell expansion. AGN reversed these effects of serum and ATRA: it delayed differentiation and increased CD34+ CD38- cells. These results suggest that physiological ATRA levels in serum may prevent efficient cell expansion. AGN, by neutralizing ATRA, improves cell expansion in serum-containing cultures, thus making AGN a useful agent for ex vivo expansion of stem cells and other specific sub-populations for research and clinical use.


Assuntos
ADP-Ribosil Ciclase/efeitos dos fármacos , Antígenos CD/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Receptores do Ácido Retinoico/antagonistas & inibidores , ADP-Ribosil Ciclase/genética , ADP-Ribosil Ciclase 1 , Antígenos CD/genética , Antígenos CD34 , Benzoatos/farmacologia , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células , Interações Medicamentosas , Sangue Fetal/citologia , Sangue Fetal/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Glicoproteínas de Membrana , Tiofenos/farmacologia
14.
J Biol Chem ; 279(29): 30844-9, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15131121

RESUMO

Agonists of retinoid X receptors (RXRs), which include the natural 9-cis-retinoic acid and synthetic analogs, are potent inducers of growth arrest and apoptosis in some cancer cells. As such, they are being used in clinical trials for the treatment and prevention of solid tumors and are used to treat cutaneous T cell lymphoma. However, the molecular mechanisms that underlie the anti-cancer effects of RXR agonists remain unclear. Here, we show that a novel pro-apoptotic pathway that is induced by RXR agonist is negatively regulated by casein kinase 1alpha (CK1alpha). CK1alpha associates with RXR in an agonist-dependent manner and phosphorylates RXR. The ability of an RXR agonist to recruit CK1alpha to a complex with RXR in cells correlates inversely with its ability to inhibit growth. Remarkably, depletion of CK1alpha in resistant cells renders them susceptible to RXR agonist-induced growth inhibition and apoptosis. Our study shows that CK1alpha can promote cell survival by interfering with RXR agonist-induced apoptosis. Inhibition of CK1alpha may enhance the anti-cancer effects of RXR agonists.


Assuntos
Apoptose , Proteínas Quinases/metabolismo , Receptores do Ácido Retinoico/metabolismo , Fatores de Transcrição/metabolismo , Animais , Caseína Quinases , Linhagem Celular , Sobrevivência Celular , Dimerização , Relação Dose-Resposta a Droga , Citometria de Fluxo , Vetores Genéticos , Células HeLa , Humanos , Immunoblotting , Células Jurkat , Ligantes , Linfoma de Células T/metabolismo , Fosforilação , Testes de Precipitina , Ligação Proteica , Proteínas Quinases/química , RNA Interferente Pequeno/metabolismo , Ratos , Receptores do Ácido Retinoico/química , Receptores X de Retinoides , Fatores de Transcrição/química , Ativação Transcricional , Transfecção
15.
Cancer Res ; 64(9): 3302-12, 2004 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15126374

RESUMO

Synthetic retinoid-related molecules, such as N-(4-hydroxyphenyl)retinamide (fenretinide) and 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) induce apoptosis in a variety of malignant cells. The mechanism(s) of action of these compounds does not appear to involve retinoic acid receptors (RARs) and retinoid X receptors (RXRs), although some investigators disagree with this view. To clarify whether some retinoid-related molecules can induce apoptosis without involving RARs and/or RXRs, we used 4-[3-(1-heptyl-4,4-dimethyl-2-oxo-1,2,3,4-tetrahydroquinolin-6-yl)-3-oxo-E-propenyl] benzoic acid (AGN193198) that neither binds effectively to RARs and RXRs nor transactivates in RAR- and RXR-mediated reporter assays. AGN193198 potently induced apoptosis in prostate, breast, and gastrointestinal carcinoma cells and in leukemia cells. AGN193198 also abolished growth (by 50% at 130-332 nM) and induced apoptosis in primary cultures established from prostatic carcinoma (13 patients) and gastrointestinal carcinoma (1 patient). Apoptosis was induced rapidly, as indicated by mitochondrial depolarization and DNA fragmentation. Molecular events provoked by AGN193198 included activation of caspase-3, -8, -9, and -10 (by 4-6 h) and the production of BID/p15 (by 6 h). These findings show that caspase-mediated induction of apoptosis by AGN193198 is RAR/RXR-independent and suggest that this compound may be useful in the treatment of prostate cancer.


Assuntos
Apoptose/efeitos dos fármacos , Caspases/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Quinolinas/farmacologia , Receptores do Ácido Retinoico/metabolismo , Retinoides/farmacologia , Fatores de Transcrição/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose/fisiologia , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Humanos , Isoenzimas/metabolismo , Células Jurkat , Masculino , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Quinolinas/metabolismo , Receptores X de Retinoides , Retinoides/metabolismo , Ativação Transcricional/efeitos dos fármacos
16.
Carcinogenesis ; 25(8): 1377-85, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14976133

RESUMO

Retinoids may be useful agents for the treatment of pancreatic cancer. However, retinoic acid receptor (RAR)-selective retinoids produce unwanted side effects. In contrast, retinoid X receptor (RXR)-selective retinoids produce fewer side effects; however, it was not known whether RXR-selective retinoids could reduce pancreatic tumor cell proliferation. In the present study, the novel RXR-selective retinoid, AGN194204, was compared with that of other retinoids for the ability to suppress pancreatic cancer cell proliferation. We treated various pancreatic cancer cell lines with receptor-selective ligands and cytotoxic agents and monitored the effects on cell proliferation, markers of apoptosis and cell cycle. Our results indicate that AGN194204, at concentrations >10 nM, inhibits proliferation of MIA PaCa-2 and BxPC-3 cells but not the proliferation of AsPC-1 cells. Moreover, in BxPC-3 and MIA PaCa-2 cells, AGN194204 was 10-100 times more effective than RAR-selective retinoids. AGN194204-dependent suppression of MIA PaCa-2 cell proliferation is associated with reduced cyclin E and cyclin-dependent kinase 6 (cdk6) level, but cyclin D1, cdk2 and cdk4 content is not altered. In addition, p27 level increases 2-fold. The RXR-selective antagonist, AGN195393, reverses the AGN194204-dependent growth inhibition and the decline in cyclin E and cdk6 levels. In contrast, these changes are not reversed by treatment with the RAR antagonist, AGN193109. AGN194204 did not appear to alter cell apoptosis as measured by change in cleavage of procaspase-3, -8 or -9. We also examined the effects AGN194204 co-treatment with cytotoxic agents. Treatment of MIA PaCa-2 cells with AGN194204 + cisplatin, gemcitabine, 5-fluorouracil, interferon (IFN)alpha or IFNgamma resulted in an additive but not synergistic reduction in MIA PaCa-2 cell number. These results indicate that AGN194204, an RXR-selective retinoid, is a more effective inhibitor of pancreatic cell proliferation than the RAR-selective retinoids, and further indicate that AGN194204 produces an additive reduction in cell number when given with other agents. Our results suggest that RXR-selective ligands, which are less toxic than RAR-selective ligands, may be suitable agents for the treatment of pancreatic cancer.


Assuntos
Desoxicitidina/análogos & derivados , Ácidos Graxos Insaturados/farmacologia , Proteínas Proto-Oncogênicas , Receptores do Ácido Retinoico/metabolismo , Retinoides/metabolismo , Tetra-Hidronaftalenos/farmacologia , Fatores de Transcrição/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Western Blotting , Quinases relacionadas a CDC2 e CDC28/metabolismo , Ciclo Celular , Divisão Celular , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Quinase 2 Dependente de Ciclina , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Desoxicitidina/farmacologia , Relação Dose-Resposta a Droga , Fluoruracila/farmacologia , Humanos , Interferon-alfa/metabolismo , Interferon-alfa/farmacologia , Interferon gama/metabolismo , Interferon gama/farmacologia , Ligantes , Neoplasias Pancreáticas/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Receptores X de Retinoides , Fatores de Tempo , Gencitabina
17.
Blood ; 103(4): 1286-95, 2004 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-14576045

RESUMO

Retinoids are potent inducers of cell cycle arrest and differentiation of numerous cell types, notably granulocytes. However the mechanisms by which retinoids mediate cell cycle arrest during differentiation remain unclear. We have used myeloid differentiation to characterize the molecular pathways that couple cell cycle withdrawal to terminal differentiation. Using primary cells from mice deficient for either the cyclin-dependent kinase inhibitor (CDKi) p27(Kip1), the Myc antagonist Mad1, or both Mad1 and p27(Kip1), we observed that signals mediated through retinoic acid receptor alpha (RAR alpha), but not RAR beta or gamma, required both Mad1 and p27(Kip1) to induce cell cycle arrest and to accelerate terminal differentiation of granulocytes. Although RAR alpha did not directly regulate Mad1 or p27(Kip1), the RAR alpha target gene C/EBP epsilon directly regulated transcription of Mad1. Induction of C/EBP epsilon activity in granulocytic cells led to rapid induction of Mad1 protein and transcript, with direct binding of C/EBP epsilon to the Mad1 promoter demonstrated through chromatin immunoprecipitation assay. These data demonstrate that cell cycle arrest in response to RAR alpha specifically requires Mad1 and p27(Kip1) and that Mad1 is transcriptionally activated by CCAAT/enhancer-binding protein epsilon (C/EBP epsilon). Moreover, these data demonstrate selectivity among the RARs for cell cycle arrest pathways and provide a direct mechanism to link differentiation induction and regulation of the Myc antagonist Mad1.


Assuntos
Granulócitos/citologia , Granulócitos/fisiologia , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Animais , Antineoplásicos/farmacologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p27 , Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Camundongos , Camundongos Mutantes , Proteínas Nucleares , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Receptores do Ácido Retinoico/agonistas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Receptor alfa de Ácido Retinoico , Tretinoína/farmacologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
18.
J Biol Chem ; 278(48): 48066-73, 2003 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-12928434

RESUMO

Tazarotene-induced protein 3 (TIG3) is a recently discovered regulatory protein that is expressed in the suprabasal epidermis. In the present study, we show that TIG3 regulates keratinocyte viability and proliferation. TIG3-dependent reduction in keratinocyte viability is accompanied by a substantial increase in the number of sub-G1 cells, nuclear shrinkage, and increased formation of cornified envelope-like structures. TIG3 localizes to the membrane fraction, and TIG3-dependent differentiation is associated with increased type I transglutaminase activity. Microscopic localization and isopeptide cross-linking studies suggest that TIG3 and type I transglutaminase co-localize in membranes. Markers of apoptosis, including caspases and poly(ADP-ribose) polymerase, are not activated by TIG3, and caspase inhibitors do not stop the TIG3-dependent reduction in cell viability. Truncation of the carboxyl-terminal membrane-anchoring domain results in a complete loss of TIG3 activity. The morphology of the TIG3-positive cells and the effects on cornified envelope formation suggest that TIG3 is an activator of terminal keratinocyte differentiation. Our studies suggest that TIG3 facilitates the terminal stages in keratinocyte differentiation via activation of type I transglutaminase.


Assuntos
Queratinócitos/citologia , Receptores do Ácido Retinoico/fisiologia , Transglutaminases/metabolismo , Adenoviridae/genética , Clorometilcetonas de Aminoácidos/farmacologia , Apoptose , Caspase 3 , Caspases/metabolismo , Diferenciação Celular , Divisão Celular , Membrana Celular/metabolismo , Núcleo Celular/patologia , Sobrevivência Celular , DNA/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática , Citometria de Fluxo , Fase G1 , Humanos , Immunoblotting , Queratinócitos/metabolismo , Microscopia de Fluorescência , Poli(ADP-Ribose) Polimerases , Estrutura Terciária de Proteína , Receptores do Ácido Retinoico/metabolismo , Tetraciclina/farmacologia , Fatores de Tempo , Transglutaminases/química , Raios Ultravioleta
19.
Oncogene ; 22(30): 4627-35, 2003 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-12879006

RESUMO

Retinoids can regulate the proliferation and differentiation of various tumor cells. It is thought that nuclear retinoid receptors mediate these effects by regulating gene transcription. The identity of specific retinoid target genes is only beginning to be unraveled. One candidate for mediating retinoid-induced growth suppression is the novel class II tumor suppressor gene tazarotene-induced gene 3 (TIG3). We examined the constitutive and all-trans retinoic acid (ATRA)-inducible expression of TIG3 mRNA in five head and neck squamous cell carcinoma (HNSCC) and five nonsmall cell lung carcinoma (NSCLC) cell lines to determine whether it is associated with their responsiveness to ATRA. The expression patterns of retinoic acid receptor beta (RARbeta), another putative retinoid-inducible tumor suppressor gene, were also examined. The constitutive TIG3 expression was high in one HNSCC cell line and two NSCLC cell lines, and moderate to very low in the other cells. Some RARbeta-expressing cells had either low or undetectable TIG3 levels and vice versa. ATRA (1 microM; 48 h) increased TIG3 mRNA in 4/5 HNSCCs and 3/5 NSCLCs and RARbeta mRNA in some of the same cell lines, but also in cells that did not show TIG3 induction. TIG3 mRNA was induced by ATRA between 6 and 12 h in most of the responsive cells. ATRA concentrations required for TIG3 induction ranged from 1 to 500 nM depending on the cell line. The pan-RAR antagonists AGN193109 and the RARalpha antagonist Ro 41-5253 blocked TIG3 induction by ATRA. ATRA suppressed anchorage-independent colony formation in most cells that had a high or moderate constitutive or induced TIG3 expression level. In contrast, RARbeta mRNA expression pattern was not correlated with sensitivity to ATRA. These results suggest that TIG3 is regulated by ATRA via retinoid receptors in certain aerodigestive tract cancer cells, and its induction by ATRA is associated with the suppression of anchorage-independent growth.


Assuntos
Transformação Celular Neoplásica , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias Pulmonares/metabolismo , Receptores do Ácido Retinoico/biossíntese , Tretinoína/farmacologia , Northern Blotting , Divisão Celular , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Humanos , Fenótipo , RNA Mensageiro/metabolismo , Fatores de Tempo , Transcrição Gênica , Células Tumorais Cultivadas
20.
Nat Med ; 9(8): 1033-8, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12872164

RESUMO

The mechanisms of retinoid activity in tumors remain largely unknown. Here we establish that retinoids cause extensive apoptosis of medulloblastoma cells. In a xenograft model, retinoids largely abrogated tumor growth. Using receptor-specific retinoid agonists, we defined a subset of mRNAs that were induced by all active retinoids in retinoid-sensitive cell lines. We also identified bone morphogenetic protein-2 (BMP-2) as a candidate mediator of retinoid activity. BMP-2 protein induced medulloblastoma cell apoptosis, whereas the BMP-2 antagonist noggin blocked both retinoid and BMP-2-induced apoptosis. BMP-2 also induced p38 mitogen-activated protein kinase (MAPK), which is necessary for BMP-2- and retinoid-induced apoptosis. Retinoid-resistant medulloblastoma cells underwent apoptosis when treated with BMP-2 or when cultured with retinoid-sensitive medulloblastoma cells. Retinoid-induced expression of BMP-2 is thus necessary and sufficient for apoptosis of retinoid-responsive cells, and expression of BMP-2 by retinoid-sensitive cells is sufficient to induce apoptosis in surrounding retinoid-resistant cells.


Assuntos
Apoptose , Proteínas Morfogenéticas Ósseas/metabolismo , Neoplasias Encefálicas/metabolismo , Meduloblastoma/metabolismo , Comunicação Parácrina , Retinoides/farmacologia , Fator de Crescimento Transformador beta , Animais , Proteína Morfogenética Óssea 2 , Receptores de Proteínas Morfogenéticas Ósseas , Neoplasias Encefálicas/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Meduloblastoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Fatores de Crescimento/genética , Receptores de Fatores de Crescimento/metabolismo , Transplante Heterólogo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA