Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes Dev ; 38(7-8): 308-321, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38719541

RESUMO

The transcription factor Oct4/Pou5f1 is a component of the regulatory circuitry governing pluripotency and is widely used to induce pluripotency from somatic cells. Here we used domain swapping and mutagenesis to study Oct4's reprogramming ability, identifying a redox-sensitive DNA binding domain, cysteine residue (Cys48), as a key determinant of reprogramming and differentiation. Oct4 Cys48 sensitizes the protein to oxidative inhibition of DNA binding activity and promotes oxidation-mediated protein ubiquitylation. Pou5f1 C48S point mutation has little effect on undifferentiated embryonic stem cells (ESCs) but upon retinoic acid (RA) treatment causes retention of Oct4 expression, deregulated gene expression, and aberrant differentiation. Pou5f1 C48S ESCs also form less differentiated teratomas and contribute poorly to adult somatic tissues. Finally, we describe Pou5f1 C48S (Janky) mice, which in the homozygous condition are severely developmentally restricted after E4.5. Rare animals bypassing this restriction appear normal at birth but are sterile. Collectively, these findings uncover a novel Oct4 redox mechanism involved in both entry into and exit from pluripotency.


Assuntos
Diferenciação Celular , Reprogramação Celular , Fator 3 de Transcrição de Octâmero , Oxirredução , Fator 3 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Animais , Camundongos , Diferenciação Celular/genética , Reprogramação Celular/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Tretinoína/farmacologia , Tretinoína/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos
2.
bioRxiv ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36865286

RESUMO

The transcription factor Oct4/Pou5f1 is a component of the regulatory circuitry governing pluripotency and is widely used to induce pluripotency from somatic cells. Here we use domain swapping and mutagenesis to study Oct4s reprogramming ability, identifying a redox-sensitive DNA binding domain cysteine residue (Cys48) as a key determinant of reprogramming and differentiation. Oct4 Cys48 sensitizes the protein to oxidative inhibition of DNA binding activity and promotes oxidation-mediated protein ubiquitylation. Pou5f1C48S point mutation has little effect on undifferentiated embryonic stem cells (ESCs), but upon retinoic acid (RA) treatment causes retention of Oct4 expression, deregulated gene expression and aberrant differentiation. Pou5f1C48S ESCs also form less differentiated teratomas and contribute poorly to adult somatic tissues. Finally, we describe Pou5f1C48S (Janky) mice, which in the homozygous condition are severely developmentally restricted after E4.5. Rare animals bypassing this restriction appear normal at birth but are sterile. Collectively, these findings uncover a novel Oct4 redox mechanism involved in both entry into and exit from pluripotency.

3.
Nucleic Acids Res ; 51(5): 2117-2136, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36715322

RESUMO

The conserved complex of the Rad6 E2 ubiquitin-conjugating enzyme and the Bre1 E3 ubiquitin ligase catalyzes histone H2B monoubiquitination (H2Bub1), which regulates chromatin dynamics during transcription and other nuclear processes. Here, we report a crystal structure of Rad6 and the non-RING domain N-terminal region of Bre1, which shows an asymmetric homodimer of Bre1 contacting a conserved loop on the Rad6 'backside'. This contact is distant from the Rad6 catalytic site and is the location of mutations that impair telomeric silencing in yeast. Mutational analyses validated the importance of this contact for the Rad6-Bre1 interaction, chromatin-binding dynamics, H2Bub1 formation and gene expression. Moreover, the non-RING N-terminal region of Bre1 is sufficient to confer nucleosome binding ability to Rad6 in vitro. Interestingly, Rad6 P43L protein, an interaction interface mutant and equivalent to a cancer mutation in the human homolog, bound Bre1 5-fold more tightly than native Rad6 in vitro, but showed reduced chromatin association of Bre1 and reduced levels of H2Bub1 in vivo. These surprising observations imply conformational transitions of the Rad6-Bre1 complex during its chromatin-associated functional cycle, and reveal the differential effects of specific disease-relevant mutations on the chromatin-bound and unbound states. Overall, our study provides structural insights into Rad6-Bre1 interaction through a novel interface that is important for their biochemical and biological responses.


Assuntos
Histonas , Proteínas de Saccharomyces cerevisiae , Enzimas de Conjugação de Ubiquitina , Humanos , Cromatina/genética , Cromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
4.
PLoS Genet ; 18(8): e1010376, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35994477

RESUMO

The class I histone deacetylases are essential regulators of cell fate decisions in health and disease. While pan- and class-specific HDAC inhibitors are available, these drugs do not allow a comprehensive understanding of individual HDAC function, or the therapeutic potential of isoform-specific targeting. To systematically compare the impact of individual catalytic functions of HDAC1, HDAC2 and HDAC3, we generated human HAP1 cell lines expressing catalytically inactive HDAC enzymes. Using this genetic toolbox we compare the effect of individual HDAC inhibition with the effects of class I specific inhibitors on cell viability, protein acetylation and gene expression. Individual inactivation of HDAC1 or HDAC2 has only mild effects on cell viability, while HDAC3 inactivation or loss results in DNA damage and apoptosis. Inactivation of HDAC1/HDAC2 led to increased acetylation of components of the COREST co-repressor complex, reduced deacetylase activity associated with this complex and derepression of neuronal genes. HDAC3 controls the acetylation of nuclear hormone receptor associated proteins and the expression of nuclear hormone receptor regulated genes. Acetylation of specific histone acetyltransferases and HDACs is sensitive to inactivation of HDAC1/HDAC2. Over a wide range of assays, we determined that in particular HDAC1 or HDAC2 catalytic inactivation mimics class I specific HDAC inhibitors. Importantly, we further demonstrate that catalytic inactivation of HDAC1 or HDAC2 sensitizes cells to specific cancer drugs. In summary, our systematic study revealed isoform-specific roles of HDAC1/2/3 catalytic functions. We suggest that targeted genetic inactivation of particular isoforms effectively mimics pharmacological HDAC inhibition allowing the identification of relevant HDACs as targets for therapeutic intervention.


Assuntos
Histona Desacetilase 1 , Inibidores de Histona Desacetilases , Acetilação , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
Cancers (Basel) ; 13(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498525

RESUMO

Aberrant DNA repair pathways that underlie developmental diseases and cancers are potential targets for therapeutic intervention. Targeting DNA repair signal effectors, modulators and checkpoint proteins, and utilizing the synthetic lethality phenomena has led to seminal discoveries. Efforts to efficiently translate the basic findings to the clinic are currently underway. Chromatin modulation is an integral part of DNA repair cascades and an emerging field of investigation. Here, we discuss some of the key advancements made in DNA repair-based therapeutics and what is known regarding crosstalk between chromatin and repair pathways during various cellular processes, with an emphasis on cancer.

6.
Transl Oncol ; 13(10): 100819, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32622311

RESUMO

BACKGROUND: Malignant gliomas have disproportionally high morbidity and mortality. Heterozygous mutations in the isocitrate dehydrogenase 1 (IDH1) gene are most common in glioma, resulting in predominantly arginine to histidine substitution at codon 132. Because IDH1R132H requires a wild-type allele to produce (D)-2-hydroxyglutarate for epigenetic reprogramming, loss of IDH1R132H heterozygosity is associated with glioma progression in an IDH1-wildtype-like phenotype. Although previous studies have reported that transgenic IDH1R132H induces the expression of nestin-a neural stem-cell marker, the underlying mechanism remains unclear. Furthermore, this finding seems at odds with better outcome of IDH1R132H glioma because of a negative association of nestin with overall survival. METHODS: Gene expression was compared between IDH1R132H-hemizygous and IDH1R132H-heterozygous glioma cells under adherent and spheroid growth conditions. The results were validated for (D)-2-hydroxyglutarate responsiveness by pharmacologic agents, associations with DNA methylation by bioinformatic analysis, and associations with overall survival. Bisulfite DNA sequencing, chromatin immunoprecipitation, and pharmacological approach were used. FINDINGS: Neural stem-cell marker genes, including CD44, NES, and PROM1, are generally downregulated in IDH-mutant gliomas and IDH1R132H-heterozygous spheroid growth compared respectively with IDH-wildtype gliomas and IDH1R132H-hemizygous spheroid growth, in agreement with their negative associations with patient outcome. In contrast, CD24 is specifically upregulated and apparently associated with better survival. CD24 and NES expression respond differentially to alteration of (D)-2-hydroxyglutarate levels. CD24 upregulation is associated with histone and DNA demethylation as opposed to hypermethylation in the downregulated genes. INTERPRETATION: The better outcome of IDH-mutant glioma is orchestrated exquisitely through epigenetic reprogramming that directs bidirectional expression of neural stem-cell marker genes.

7.
Mol Cell Biol ; 36(10): 1438-50, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26951200

RESUMO

Cell fate specification requires precise coordination of transcription factors and their regulators to achieve fidelity and flexibility in lineage allocation. The transcriptional repressor growth factor independence 1 (GFI1) is comprised of conserved Snail/Slug/Gfi1 (SNAG) and zinc finger motifs separated by a linker region poorly conserved with GFI1B, its closest homolog. Moreover, GFI1 and GFI1B coordinate distinct developmental fates in hematopoiesis, suggesting that their functional differences may derive from structures within their linkers. We show a binding interface between the GFI1 linker and the SP-RING domain of PIAS3, an E3-SUMO (small ubiquitin-related modifier) ligase. The PIAS3 binding region in GFI1 contains a conserved type I SUMOylation consensus element, centered on lysine-239 (K239). In silico prediction algorithms identify K239 as the only high-probability site for SUMO modification. We show that GFI1 is modified by SUMO at K239. SUMOylation-resistant derivatives of GFI1 fail to complement Gfi1 depletion phenotypes in zebrafish primitive erythropoiesis and granulocytic differentiation in cultured human cells. LSD1/CoREST recruitment and MYC repression by GFI1 are profoundly impaired for SUMOylation-resistant GFI1 derivatives, while enforced expression of MYC blocks granulocytic differentiation. These findings suggest that SUMOylation within the GFI1 linker favors LSD1/CoREST recruitment and MYC repression to govern hematopoietic differentiation.


Assuntos
Hematopoese , Histona Desmetilases/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Animais , Sítios de Ligação , Células COS , Diferenciação Celular , Chlorocebus aethiops , Regulação da Expressão Gênica , Células HEK293 , Células HL-60 , Humanos , Lisina/metabolismo , Camundongos , Chaperonas Moleculares/química , Células NIH 3T3 , Ligação Proteica , Proteínas Inibidoras de STAT Ativados/química , Proteínas Proto-Oncogênicas/química , Proteínas Repressoras/química , Sumoilação
8.
Oncotarget ; 6(7): 4863-87, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25605023

RESUMO

Gain-of-function mutations in the catalytic site of EZH2 (Enhancer of Zeste Homologue 2), is observed in about 22% of diffuse large B-cell lymphoma (DLBCL) cases. Here we show that selective inhibition of histone deacetylase 1,2 (HDAC1,2) activity using a small molecule inhibitor causes cytotoxic or cytostatic effects in EZH2 gain-of-function mutant (EZH2GOF) DLBCL cells. Our results show that blocking the activity of HDAC1,2 increases global H3K27ac without causing a concomitant global decrease in H3K27me3 levels. Our data shows that inhibition of HDAC1,2 is sufficient to decrease H3K27me3 present at DSBs, decrease DSB repair and activate the DNA damage response in these cells. In addition to increased H3K27me3, we found that the EZH2GOF DLBCL cells overexpress another chemotherapy resistance factor - B-lymphoma and BAL-associated protein (BBAP). BBAP monoubiquitinates histone H4K91, a residue that is also subjected to acetylation. Our results show that selective inhibition of HDAC1,2 increases H4K91ac, decreases BBAP-mediated H4K91 monoubiquitination, impairs BBAP-dependent DSB repair and sensitizes the refractory EZH2GOF DLBCL cells to treatment with doxorubicin, a chemotherapy agent. Hence, selective HDAC1,2 inhibition provides a novel DNA repair mechanism-based therapeutic approach as it can overcome both EZH2- and BBAP-mediated DSB repair in the EZH2GOF DLBCL cells.


Assuntos
Reparo do DNA , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 2/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Complexo Repressor Polycomb 2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adulto , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste , Células HeLa , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Humanos , Linfoma Difuso de Grandes Células B/metabolismo , Masculino , Complexo Repressor Polycomb 2/genética , Transfecção , Ubiquitina-Proteína Ligases/genética
9.
Cancer Cell ; 18(5): 436-47, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21075309

RESUMO

Hdac3 is essential for efficient DNA replication and DNA damage control. Deletion of Hdac3 impaired DNA repair and greatly reduced chromatin compaction and heterochromatin content. These defects corresponded to increases in histone H3K9,K14ac; H4K5ac; and H4K12ac in late S phase of the cell cycle, and histone deposition marks were retained in quiescent Hdac3-null cells. Liver-specific deletion of Hdac3 culminated in hepatocellular carcinoma. Whereas HDAC3 expression was downregulated in only a small number of human liver cancers, the mRNA levels of the HDAC3 cofactor NCOR1 were reduced in one-third of these cases. siRNA targeting of NCOR1 and SMRT (NCOR2) increased H4K5ac and caused DNA damage, indicating that the HDAC3/NCOR/SMRT axis is critical for maintaining chromatin structure and genomic stability.


Assuntos
Cromatina/ultraestrutura , Instabilidade Genômica , Histona Desacetilases/fisiologia , Histonas/metabolismo , Acetilação , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Dano ao DNA , Reparo do DNA , Replicação do DNA , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , Fase S
10.
Gene ; 415(1-2): 49-59, 2008 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-18395996

RESUMO

Cytochrome P450 monooxygenases or CYPs, a family of endobiotics and xenobiotics metabolizing enzymes, are found in all organisms. We reported earlier that the promoters of Drosophila Cyp6a2 and Cyp6a8 genes are induced by caffeine. Since caffeine antagonizes adenosine receptor (AdoR) and inhibits cAMP phosphodiesterase (PDE), we used luciferase reporter gene to examine whether in SL-2 cells and adult Drosophila, induction of the two Cyp6 genes is mediated via AdoR and/or PDE pathway. Results showed that AdoR is not involved because AdoR agonists or antagonists do not affect the Cyp6 promoter activities. However, inhibition of PDE by specific inhibitors including caffeine causes induction of both Cyp6 gene promoters. We also found that flies mutant for dunce gene coding for cAMP-PDE, have higher Cyp6a8 promoter activity than the wild-type flies. We demonstrate that caffeine treatment increases intracellular cAMP levels, and cAMP treatment induces the Cyp6 gene promoters. Since both Cyp6 genes have multiple sites for JUN transcription factors, which generally play a positive role in cAMP pathway, effect of Drosophila jun (D-jun) on the Cyp6a8 promoter activity was examined. Results showed that the expression of D-jun sense plasmid causes downregulation rather than activation of the Cyp6a8 promoter. Conversely, expression of antisense plasmid increased the promoter activity. Interestingly, caffeine treatment decreased the D-JUN protein level in SL-2 cells as well as in adult flies. These results suggest that D-jun acts as a negative regulator, and caffeine induction of Cyp6a8 and Cyp6a2 genes is mediated by the upregulation of cAMP pathway and downregulation of the D-JUN protein level.


Assuntos
Cafeína/farmacologia , AMP Cíclico/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , 3',5'-AMP Cíclico Fosfodiesterases/genética , Adenosina/farmacologia , Agonistas do Receptor A1 de Adenosina , Antagonistas do Receptor A1 de Adenosina , Animais , Bucladesina/farmacologia , Linhagem Celular , Família 6 do Citocromo P450 , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/enzimologia , Inibidores Enzimáticos/farmacologia , Genes de Insetos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Modelos Genéticos , Mutação/genética , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-jun/genética , Transcrição Gênica/efeitos dos fármacos
11.
Carcinogenesis ; 28(10): 2184-92, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17468514

RESUMO

Little is known about early carcinogen-induced protein alterations in mammary epithelium. Detection of early alterations would enhance our understanding of early-stage carcinogenesis. Here, normal human mammary epithelial cells (HMECs) were exposed to dietary and environmental carcinogens [2-amino-1-methyl-6-phenylimidazo[4,5b]pyridine (PhIP), 4-aminobiphenyl (ABP), benzo[a]pyrene, 2,3,7,8-tetrachlorodibenzo-p-dioxin] individually or in combination. A phage display library of single-chain variable fragment antibodies was used to screen protein targets altered by the treatment. In combination with matrix-assisted laser desorption time of flight, we identified histone H3 as a target antigen. Although histone H3 total protein remained unchanged in control and treated HMEC, the methylation of lysine 4 was altered. A reduction in mono-methyl histone H3 (Lys 4) was observed in treated HMEC compared with control HMEC. This alteration was shown to be dependent on carcinogen concentration and specific for PhIP and ABP. To characterize potential histone demethylation mechanisms, localization and protein expression patterns of lysine-specific demethylase 1 (LSD1) were analyzed. In control HMEC, LSD1 was present at the nuclear periphery. However, following 72 h carcinogen treatment, LSD1 localized within the nucleus. Within 48 h after treatment, mono-methyl histone H3 (Lys 4) was restored and LSD1 localization was reversed. Protein expression levels of LSD1 were also increased in treated HMEC compared with control HMEC. Our data suggest that the induction of a single enzyme, LSD1, represents an early response to carcinogen exposure, which leads to the demethylation of histone H3 (Lys 4), which, in turn, may influence the expression of multiple genes critical in early-stage mammary carcinogenesis.


Assuntos
Mama/citologia , Mama/fisiologia , Carcinógenos/toxicidade , Células Epiteliais/fisiologia , Histonas/metabolismo , Compostos de Aminobifenil/toxicidade , Benzo(a)pireno/toxicidade , Biotinilação , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Feminino , Histonas/efeitos dos fármacos , Histonas/isolamento & purificação , Humanos , Imidazóis/toxicidade , Região Variável de Imunoglobulina/imunologia , Biblioteca de Peptídeos , Dibenzodioxinas Policloradas/toxicidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
Plant Cell ; 18(1): 119-32, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16326929

RESUMO

The phaseolin (phas) promoter drives copious production of transcripts encoding the protein phaseolin during seed embryogenesis but is silent in vegetative tissues, in which a nucleosome is positioned over its three-phased TATA boxes. Transition from the inactive state in transgenic Arabidopsis thaliana leaves was accomplished by ectopic expression of the transcription factor Phaseolus vulgaris ABI3-like factor (ALF) and application of abscisic acid (ABA). Placement of hemagglutinin-tagged ALF expression under the control of an estradiol-inducible promoter permitted chromatin immunoprecipitation analysis of chronological changes in histone modifications, notably increased acetylation of H3-K9 and H4-K12, as phas chromatin was remodeled (potentiated). A different array of changes, including acetylation of H3-K14 and methylation of H3-K4, was found to be associated with ABA-mediated activation. Thus, temporal separation of phas potentiation from activation revealed that histone H3 and H4 Lys residues are not globally hyperacetylated during phas expression. Whereas decreases in histone H3 and H4 levels were detected during ALF-mediated remodeling, slight increases occurred after ABA-mediated activation, suggesting the restoration of histone-phas interactions or the replacement of histones in the phas chromatin. The observed histone modifications provide insight into factors involved in the euchromatinization and activation of a plant gene and expand the evidence for histone code conservation among eukaryotes.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Transcrição Gênica , Ácido Abscísico/farmacologia , Acetilação , Arabidopsis/anatomia & histologia , Arabidopsis/metabolismo , Cromatina/metabolismo , Estradiol/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes Reporter , Metilação , Dados de Sequência Molecular , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
13.
Plant Mol Biol ; 54(1): 25-38, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15159632

RESUMO

The involvement of transcription factors Arabidopsis abscisic acid-insensitive3 (ABI3), maize viviparous1 (VP1) and Phaseolus vulgaris ABI3-like factor (PvALF) in the spatial control of storage protein gene expression is well established. However, little insight exists as to how they are themselves regulated. To address this, a 5.15 kb ABI3 upstream sequence including a 4.6 kb full-length promoter and 519 bp of 5'-untranslated region (UTR) was used to drive either beta-glucuronidase (GUS) or green fluorescent protein (GFP) expression in Arabidopsis. Expression from the full-length (- 4630/ + 519ABI3 ) and various 5'-truncated promoters was detected during embryogenesis in all lines, except those transgenic for promoter elements shorter than 364 bp. Two upstream activating regions, -3600 to -2033 and -2033 to -882, enhanced GUS expression in seeds. The -882 to -364 region was sufficient to confer seed-specific expression of GUS when fused to a - 64/ + 6CaMV 35S minimal promoter. Expression from the ABI3 promoter constructs was seed-specific, except in the presence of exogenous abscisic acid (ABA) (>0.3 microM), when GUS expression was detected in seedling roots. Excision of a 405 bp region containing three upstream open reading frames (uORFs) from the 5'-UTR dramatically increased GUS expression and debilitated constraint of reporter expression in roots. Negative regulation of ABI3 expression by the 5'-UTR may involve a post-transcriptional mechanism analogous to that of tumor suppressor genes which also bear long, uORF-containing, 5'-UTRs, or through interactions with RNA-binding proteins.


Assuntos
Região 5'-Flanqueadora/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regiões Promotoras Genéticas/genética , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Arabidopsis/embriologia , Arabidopsis/crescimento & desenvolvimento , Sequência de Bases , Escuridão , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Glucuronidase/genética , Glucuronidase/metabolismo , Proteínas de Fluorescência Verde , Luz , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Dados de Sequência Molecular , Mutação , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Fatores de Transcrição
14.
J Biol Chem ; 278(46): 45397-405, 2003 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-12960166

RESUMO

Elucidating the mechanisms by which the transcription machinery accesses promoters in their chromatin environment is a fundamental aspect of understanding gene regulation. The phas promoter is normally constrained by a rotationally and translationally positioned nucleosome over its TATA region except during embryogenesis when it is potentiated by the presence of Phaseolus vulgaris ABI3-like factor (PvALF), a plant-specific transcription factor, and activated by an abscisic acid (ABA)-induced signal transduction cascade. Ectopic expression of PvALF and the supply of ABA in transgenic tobacco or Arabidopsis leaves can activate expression from phas. We confirmed by [3H]thymidine incorporation that active DNA replication occurred concomitant with the presence of PvALF and ABA. Arrest of DNA synthesis or S phase progression by infiltration of the leaves with replication inhibitors (hydroxyurea, roscovitine, mimosine) strongly inhibited transcriptional activation, especially the ABA-mediated activation step. Similarly, activation of endogenous Arabidopsis MAT and LEA genes in leaf tissue by the presence of ABA and ectopically expressed PvALF was inhibited by DNA replication arrest. No change in transcript levels on the arrest of replication was detected for abi1, abi2, and era1, negative regulators of the ABA signal transduction cascade or for cell cycle components ick1 and aip3. However, a reduction in transcript accumulation for the crucial ABA signaling effector, abi5, occurred upon DNA replication arrest (probably reflected in the decrease in MAT and LEA gene expression). Contrary to the conventional view that ABA inhibits DNA replication, our findings show that ABA acts in concert with S phase progression to activate gene expression.


Assuntos
Proteínas de Plantas/genética , Fase S , Ativação Transcricional , Arabidopsis/metabolismo , Cromatina/metabolismo , DNA/metabolismo , Regulação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hidroxiureia/farmacologia , Nucleossomos/metabolismo , Phaseolus/metabolismo , Plantas Geneticamente Modificadas , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleases/metabolismo , Transdução de Sinais , Fatores de Tempo , Nicotiana
15.
Plant J ; 33(5): 853-66, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12609027

RESUMO

The phas promoter displays stringent spatial regulation, being very highly expressed during embryogenesis and completely silent during all phases of vegetative development in bean, Phaseolus vulgaris. This pattern is maintained in transgenic tobacco and, as shown here, Arabidopsis. Dimethyl sulphate in vivo footprinting analyses revealed that over 20 cis-elements within the proximal 295 bp of the phas promoter are protected by factor binding in seed tissues whereas none are bound in leaves. The hypothesis that this complex profile represents a summation of several module (cotyledon, hypocotyl, and radicle)-specific factor-DNA interactions has been explored by the incorporation of site-directed substitution mutations into 10 locations within the -295phas promoter. Only 2.6% of -295phas promoter activity remained after mutation of the G-box; the CCAAAT box, the E-box and the RY elements were also found to mediate high levels of expression in embryos. Whereas the CACA element has dual positive and negative regulatory roles, the vicilin box was identified as a strong negative regulatory element. The proximal (-70 to -64) RY motif was found to bestow expression in the hypocotyl while all the RY elements contribute to expression in cotyledons but not to vascular tissue expression during embryogenesis. RY elements at positions -277 to -271, -260 to -254, and -237 to -231 were found to orchestrate radicle-specific repression. The G-box appears to be the functional abscisic acid responsive element and the E-site may be a coupling element. The results substantiate the concept that autarkical cis-element functions generate modular patterning during embryogenesis. They also reflect the existence of both redundancy and hierarchy in cis-element interactions. Importantly, the virtually identical expression patterns observed for the two distantly related plants studied argue strongly for the generality of function for the observed factor-element interactions.


Assuntos
Arabidopsis/embriologia , Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Phaseolus/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Genes Reporter/genética , Mutação , Plantas Geneticamente Modificadas , Sequências Reguladoras de Ácido Ribonucleico/genética , Elementos de Resposta/genética , Sementes/embriologia , Sementes/genética , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA