Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nat Commun ; 15(1): 2113, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459052

RESUMO

Macrophages are abundant immune cells in the microenvironment of diffuse large B-cell lymphoma (DLBCL). Macrophage estimation by immunohistochemistry shows varying prognostic significance across studies in DLBCL, and does not provide a comprehensive analysis of macrophage subtypes. Here, using digital spatial profiling with whole transcriptome analysis of CD68+ cells, we characterize macrophages in distinct spatial niches of reactive lymphoid tissues (RLTs) and DLBCL. We reveal transcriptomic differences between macrophages within RLTs (light zone /dark zone, germinal center/ interfollicular), and between disease states (RLTs/ DLBCL), which we then use to generate six spatially-derived macrophage signatures (MacroSigs). We proceed to interrogate these MacroSigs in macrophage and DLBCL single-cell RNA-sequencing datasets, and in gene-expression data from multiple DLBCL cohorts. We show that specific MacroSigs are associated with cell-of-origin subtypes and overall survival in DLBCL. This study provides a spatially-resolved whole-transcriptome atlas of macrophages in reactive and malignant lymphoid tissues, showing biological and clinical significance.


Assuntos
Linfoma Difuso de Grandes Células B , Humanos , Prognóstico , Linfoma Difuso de Grandes Células B/patologia , Perfilação da Expressão Gênica , Transcriptoma , Centro Germinativo/patologia , Microambiente Tumoral/genética
2.
J Chem Inf Model ; 63(10): 3043-3053, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37143234

RESUMO

Peptide toxins that adopt the ShK fold can inhibit the voltage-gated potassium channel KV1.3 with IC50 values in the pM range and are therefore potential leads for drugs targeting autoimmune and neuroinflammatory diseases. Nuclear magnetic resonance (NMR) relaxation measurements and pressure-dependent NMR have shown that, despite being cross-linked by disulfide bonds, ShK itself is flexible in solution. This flexibility affects the local structure around the pharmacophore for the KV1.3 channel blockade and, in particular, the relative orientation of the key Lys and Tyr side chains (Lys22 and Tyr23 in ShK) and has implications for the design of KV1.3 inhibitors. In this study, we have performed molecular dynamics (MD) simulations on ShK and a close homologue, HmK, to probe the conformational space occupied by the Lys and Tyr residues, and docked the different conformations with a recently determined cryo-EM structure of the KV1.3 channel. Although ShK and HmK have 60% sequence identity, their dynamic behaviors are quite different, with ShK sampling a broad range of conformations over the course of a 5 µs MD simulation, while HmK is relatively rigid. We also investigated the importance of conformational dynamics, in particular the distance between the side chains of the key dyad Lys22 and Tyr23, for binding to KV1.3. Although these peptides have quite different dynamics, the dyad in both adopts a similar configuration upon binding, revealing a conformational selection upon binding to KV1.3 in the case of ShK. Both peptides bind to KV1.3 with Lys22 occupying the pore of the channel. Intriguingly, the more flexible peptide, ShK, binds with significantly higher affinity than HmK.


Assuntos
Venenos de Cnidários , Anêmonas-do-Mar , Animais , Canal de Potássio Kv1.3/química , Canal de Potássio Kv1.3/metabolismo , Venenos de Cnidários/química , Venenos de Cnidários/metabolismo , Venenos de Cnidários/farmacologia , Anêmonas-do-Mar/química , Anêmonas-do-Mar/metabolismo , Peptídeos/química , Conformação Molecular , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/química , Canal de Potássio Kv1.2/metabolismo
3.
EBioMedicine ; 83: 104216, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35986950

RESUMO

The tumour microenvironment (TME) imposes a major obstacle to infiltrating T-lymphocytes and suppresses their function. Several immune checkpoint proteins that interfere with ligand/receptor interactions and impede T-cell anti-tumour responses have been identified. Immunotherapies that block immune checkpoints have revolutionized the treatment paradigm for many patients with advanced-stage tumours. However, metabolic constraints and soluble factors that exist within the TME exacerbate the functional exhaustion of tumour-infiltrating T-cells. Here we review these multifactorial constraints and mechanisms - elevated immunosuppressive metabolites and enzymes, nutrient insufficiency, hypoxia, increased acidity, immense amounts of extracellular ATP and adenosine, dysregulated bioenergetic and purinergic signalling, and ionic imbalance - that operate in the TME and collectively suppress T-cell function. We discuss how scientific advances could help overcome the complex TME obstacles for tumour-infiltrating T-lymphocytes, aiming to stimulate further research for developing new therapeutic strategies by harnessing the full potential of the immune system in combating cancer.


Assuntos
Neoplasias , Linfócitos T , Adenosina , Trifosfato de Adenosina , Humanos , Proteínas de Checkpoint Imunológico , Imunoterapia , Ligantes , Neoplasias/patologia , Microambiente Tumoral
4.
Cancers (Basel) ; 14(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35267526

RESUMO

Immune checkpoint inhibitors have shown great promise, emerging as a new pillar of treatment for cancer; however, only a relatively small proportion of recipients show a durable response to treatment. Strategies that reliably differentiate durably-responding tumours from non-responsive tumours are a critical unmet need. Persistent and durable immunological responses are associated with the generation of memory T cells. Effector memory T cells associated with tumour response to immune therapies are characterized by substantial upregulation of the potassium channel Kv1.3 after repeated antigen stimulation. We have developed a new Kv1.3 targeting radiopharmaceutical, [18F]AlF-NOTA-KCNA3P, and evaluated whether it can reliably differentiate tumours successfully responding to immune checkpoint inhibitor (ICI) therapy targeting PD-1 alone or combined with CLTA4. In a syngeneic colon cancer model, we compared tumour retention of [18F]AlF-NOTA-KCNA3P with changes in the tumour immune microenvironment determined by flow cytometry. Imaging with [18F]AlF-NOTA-KCNA3P reliably differentiated tumours responding to ICI therapy from non-responding tumours and was associated with substantial tumour infiltration of T cells, especially Kv1.3-expressing CD8+ effector memory T cells.

5.
ACS Pharmacol Transl Sci ; 3(4): 720-736, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32832873

RESUMO

We describe a cysteine-rich, membrane-penetrating, joint-targeting, and remarkably stable peptide, EgK5, that modulates voltage-gated KV1.3 potassium channels in T lymphocytes by a distinctive mechanism. EgK5 enters plasma membranes and binds to KV1.3, causing current run-down by a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. EgK5 exhibits selectivity for KV1.3 over other channels, receptors, transporters, and enzymes. EgK5 suppresses antigen-triggered proliferation of effector memory T cells, a subset enriched among pathogenic autoreactive T cells in autoimmune disease. PET-CT imaging with 18F-labeled EgK5 shows accumulation of the peptide in large and small joints of rodents. In keeping with its arthrotropism, EgK5 treats disease in a rat model of rheumatoid arthritis. It was also effective in treating disease in a rat model of atopic dermatitis. No signs of toxicity are observed at 10-100 times the in vivo dose. EgK5 shows promise for clinical development as a therapeutic for autoimmune diseases.

6.
Nat Prod Rep ; 37(5): 703-716, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32065187

RESUMO

Covering: Up to 2020Ion channels are a vast super-family of membrane proteins that play critical physiological roles in excitable and non-excitable cells. Their biomedical importance makes them valuable and attractive drug targets for neurological, cardiovascular, gastrointestinal and metabolic diseases, and for cancer therapy and immune modulation. Current therapeutics target only a minor subset of ion channels, leaving a large unexploited space within the ion channel field. Natural products harnessed from the almost unlimited and diverse universe of compounds within the bioenvironment have been used to modulate channels for decades. In this review we highlight the impact made by natural products on ion channel pharmacology, specifically on K+, NaV and CaV channels, and use case studies to describe the development of ion channel-modulating drugs from natural sources for the treatment of pain, heart disease and autoimmune diseases.


Assuntos
Produtos Biológicos/farmacologia , Canais Iônicos/metabolismo , Animais , Doenças Autoimunes/tratamento farmacológico , Produtos Biológicos/química , Cardiopatias/tratamento farmacológico , Humanos , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/química , Terapia de Alvo Molecular , Dor Intratável/tratamento farmacológico
7.
Nat Rev Drug Discov ; 18(5): 339-357, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30728472

RESUMO

Ion channels play fundamental roles in both excitable and non-excitable tissues and therefore constitute attractive drug targets for myriad neurological, cardiovascular and metabolic diseases as well as for cancer and immunomodulation. However, achieving selectivity for specific ion channel subtypes with small-molecule drugs has been challenging, and there currently is a growing trend to target ion channels with biologics. One approach is to improve the pharmacokinetics of existing or novel venom-derived peptides. In parallel, after initial studies with polyclonal antibodies demonstrated the technical feasibility of inhibiting channel function with antibodies, multiple preclinical programmes are now using the full spectrum of available technologies to generate conventional monoclonal and engineered antibodies or nanobodies against extracellular loops of ion channels. After a summary of the current state of ion channel drug discovery, this Review discusses recent developments using the purinergic receptor channel P2X purinoceptor 7 (P2X7), the voltage-gated potassium channel KV1.3 and the voltage-gated sodium channel NaV1.7 as examples of targeting ion channels with biologics.


Assuntos
Anticorpos Bloqueadores/farmacologia , Canais Iônicos/efeitos dos fármacos , Peçonhas/farmacologia , Animais , Anticorpos Bloqueadores/uso terapêutico , Descoberta de Drogas , Humanos , Canais Iônicos/imunologia , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peçonhas/uso terapêutico
8.
Br J Cancer ; 118(2): 200-212, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29161243

RESUMO

BACKGROUND: Platinum-based drugs such as Cisplatin are commonly employed for cancer treatment. Despite an initial therapeutic response, Cisplatin treatment often results in the development of chemoresistance. To identify novel approaches to overcome Cisplatin resistance, we tested Cisplatin in combination with K+ channel modulators on colorectal cancer (CRC) cells. METHODS: The functional expression of Ca2+-activated (KCa3.1, also known as KCNN4) and voltage-dependent (Kv11.1, also known as KCNH2 or hERG1) K+ channels was determined in two CRC cell lines (HCT-116 and HCT-8) by molecular and electrophysiological techniques. Cisplatin and several K+ channel modulators were tested in vitro for their action on K+ currents, cell vitality, apoptosis, cell cycle, proliferation, intracellular signalling and Platinum uptake. These effects were also analysed in a mouse model mimicking Cisplatin resistance. RESULTS: Cisplatin-resistant CRC cells expressed higher levels of KCa3.1 and Kv11.1 channels, compared with Cisplatin-sensitive CRC cells. In resistant cells, KCa3.1 activators (SKA-31) and Kv11.1 inhibitors (E4031) had a synergistic action with Cisplatin in triggering apoptosis and inhibiting proliferation. The effect was maximal when KCa3.1 activation and Kv11.1 inhibition were combined. In fact, similar results were produced by Riluzole, which is able to both activate KCa3.1 and inhibit Kv11.1. Cisplatin uptake into resistant cells depended on KCa3.1 channel activity, as it was potentiated by KCa3.1 activators. Kv11.1 blockade led to increased KCa3.1 expression and thereby stimulated Cisplatin uptake. Finally, the combined administration of a KCa3.1 activator and a Kv11.1 inhibitor also overcame Cisplatin resistance in vivo. CONCLUSIONS: As Riluzole, an activator of KCa3.1 and inhibitor of Kv11.1 channels, is in clinical use, our results suggest that this compound may be useful in the clinic to improve Cisplatin efficacy and overcome Cisplatin resistance in CRC.


Assuntos
Cisplatino/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Canal de Potássio ERG1/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Animais , Apoptose/efeitos dos fármacos , Benzotiazóis/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacocinética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Canal de Potássio ERG1/metabolismo , Células HCT116 , Células HT29 , Humanos , Concentração Inibidora 50 , Camundongos , Bloqueadores dos Canais de Potássio/farmacologia , Pirazóis/farmacologia , Riluzol/farmacologia
9.
J Vis Exp ; (125)2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28715398

RESUMO

Traditionally, ocular surface cytology is studied with techniques such as spatula technology and brush technology. The problem with these techniques is that they may induce traumatic lesions on the surface of the eye, which can progress to scarring, eyelid deformity, limbal stem cell deficiency and in some cases, cause great discomfort to the subject. To avoid these clinical problems, impression cytology (IC) was developed to diagnose dry eye disease and later neoplasia, atopic disease, vernal keratoconjunctivitis and keratoconjunctivitis sicca. Typically, clinicians manually cut filter papers into required shapes and apply these to the ocular surface. Here, we describe how to perform IC using a commercially available medical device. This technique is explained here followed by immunophenotyping by flow cytometry. This technique requires less manual handling and causes less injury to the ocular surface.


Assuntos
Túnica Conjuntiva/patologia , Citodiagnóstico/métodos , Testes Imunológicos/métodos , Humanos , Fenótipo
10.
Neuropharmacology ; 127: 124-138, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28689025

RESUMO

Voltage-gated potassium channels play a key role in human physiology and pathology. Reflecting their importance, numerous channelopathies have been characterised that arise from mutations in these channels or from autoimmune attack on the channels. Voltage-gated potassium channels are also the target of a broad range of peptide toxins from venomous organisms, including sea anemones, scorpions, spiders, snakes and cone snails; many of these peptides bind to the channels with high potency and selectivity. In this review we describe the various classes of peptide toxins that block these channels and illustrate the broad range of three-dimensional structures that support channel blockade. The therapeutic opportunities afforded by these peptides are also highlighted. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'


Assuntos
Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Peçonhas/química , Animais , Peptídeos/química , Bloqueadores dos Canais de Potássio/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia
11.
Curr Opin Chem Biol ; 38: 97-107, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28412597

RESUMO

The voltage-gated Kv1.3 channel in T lymphocytes is a validated therapeutic target for diverse autoimmune diseases. Here we review the discovery of Kv1.3, its physiological role in T cells, and why it is an attractive target for modulating autoimmune responses. We focus on peptide inhibitors because the first Kv1.3-selective inhibitor in human trials is a peptide derived from a marine organism. Two broad classes of peptides block Kv1.3, the first from scorpions and the second from sea anemones. We describe their structures, their binding site in the external vestibule of Kv1.3, how they have been engineered to improve Kv1.3-specificity, and their pharmacokinetic and pharmacodynamic properties. Finally, we highlight the therapeutic potential of Kv1.3 peptide inhibitors to treat autoimmune diseases without compromising protective immune responses.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Canal de Potássio Kv1.3/antagonistas & inibidores , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Animais , Humanos , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/uso terapêutico , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/metabolismo , Bloqueadores dos Canais de Potássio/uso terapêutico
12.
Nature ; 537(7621): 497-499, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27626384
13.
Neuro Oncol ; 16(4): 528-39, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24305723

RESUMO

BACKGROUND: Tumors affecting the head, neck, and brain account for significant morbidity and mortality. The curative efficacy of radiotherapy for these tumors is well established, but radiation carries a significant risk of neurologic injury. So far, neuroprotective therapies for radiation-induced brain injury are still limited. In this study we demonstrate that Stichodactyla helianthus (ShK)-170, a specific inhibitor of the voltage-gated potassium (Kv)1.3 channel, protected mice from radiation-induced brain injury. METHODS: Mice were treated with ShK-170 for 3 days immediately after brain irradiation. Radiation-induced brain injury was assessed by MRI scans and a Morris water maze. Pathophysiological change of the brain was measured by immunofluorescence. Gene and protein expressions of Kv1.3 and inflammatory factors were measured by quantitative real-time PCR, reverse transcription PCR, ELISA assay, and western blot analyses. Kv currents were recorded in the whole-cell configuration of the patch-clamp technique. RESULTS: Radiation increased Kv1.3 mRNA and protein expression in microglia. Genetic silencing of Kv1.3 by specific short interference RNAs or pharmacological blockade with ShK-170 suppressed radiation-induced production of the proinflammatory factors interleukin-6, cyclooxygenase-2, and tumor necrosis factor-α by microglia. ShK-170 also inhibited neurotoxicity mediated by radiation-activated microglia and promoted neurogenesis by increasing the proliferation of neural progenitor cells. CONCLUSIONS: The therapeutic effect of ShK-170 is mediated by suppression of microglial activation and microglia-mediated neurotoxicity and enhanced neurorestoration by promoting proliferation of neural progenitor cells.


Assuntos
Lesões Encefálicas/prevenção & controle , Encéfalo/patologia , Venenos de Cnidários/farmacologia , Canal de Potássio Kv1.3/antagonistas & inibidores , RNA Interferente Pequeno/genética , Lesões por Radiação/prevenção & controle , Animais , Animais Recém-Nascidos , Western Blotting , Encéfalo/efeitos dos fármacos , Encéfalo/efeitos da radiação , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Ensaio de Imunoadsorção Enzimática , Técnicas Imunoenzimáticas , Imunoprecipitação , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microglia/efeitos dos fármacos , Microglia/patologia , Microglia/efeitos da radiação , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/efeitos da radiação , Bloqueadores dos Canais de Potássio/farmacologia , RNA Mensageiro/genética , Lesões por Radiação/etiologia , Lesões por Radiação/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
J Biol Chem ; 288(9): 6451-64, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23300077

RESUMO

Matrix metalloproteases (MMPs) are endopeptidases that regulate diverse biological processes. Synthesized as zymogens, MMPs become active after removal of their prodomains. Much is known about the metalloprotease activity of these enzymes, but noncanonical functions are poorly defined, and functions of the prodomains have been largely ignored. Here we report a novel metalloprotease-independent, channel-modulating function for the prodomain of MMP23 (MMP23-PD). Whole-cell patch clamping and confocal microscopy, coupled with deletion analysis, demonstrate that MMP23-PD suppresses the voltage-gated potassium channel KV1.3, but not the closely related KV1.2 channel, by trapping the channel intracellularly. Studies with KV1.2-1.3 chimeras suggest that MMP23-PD requires the presence of the KV1.3 region from the S5 trans-membrane segment to the C terminus to modulate KV1.3 channel function. NMR studies of MMP23-PD reveal a single, kinked trans-membrane α-helix, joined by a short linker to a juxtamembrane α-helix, which is associated with the surface of the membrane and protected from exchange with the solvent. The topological similarity of MMP23-PD to KCNE1, KCNE2, and KCNE4 proteins that trap KV1.3, KV1.4, KV3.3, and KV3.4 channels early in the secretory pathway suggests a shared mechanism of channel regulation. MMP23 and KV1.3 expression is enhanced and overlapping in colorectal cancers where the interaction of the two proteins could affect cell function.


Assuntos
Ativação do Canal Iônico/fisiologia , Canal de Potássio Kv1.3/metabolismo , Metaloendopeptidases/metabolismo , Animais , Células COS , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Canal de Potássio Kv1.2/genética , Canal de Potássio Kv1.2/metabolismo , Canal de Potássio Kv1.3/genética , Metaloendopeptidases/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Técnicas de Patch-Clamp , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia
15.
Proc Natl Acad Sci U S A ; 109(45): 18577-82, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23090990

RESUMO

Voltage-gated sodium (Na(V)) and potassium (K(V)) channels are critical components of neuronal action potential generation and propagation. Here, we report that Na(V)ß1 encoded by SCN1b, an integral subunit of Na(V) channels, coassembles with and modulates the biophysical properties of K(V)1 and K(V)7 channels, but not K(V)3 channels, in an isoform-specific manner. Distinct domains of Na(V)ß1 are involved in modulation of the different K(V) channels. Studies with channel chimeras demonstrate that Na(V)ß1-mediated changes in activation kinetics and voltage dependence of activation require interaction of Na(V)ß1 with the channel's voltage-sensing domain, whereas changes in inactivation and deactivation require interaction with the channel's pore domain. A molecular model based on docking studies shows Na(V)ß1 lying in the crevice between the voltage-sensing and pore domains of K(V) channels, making significant contacts with the S1 and S5 segments. Cross-modulation of Na(V) and K(V) channels by Na(V)ß1 may promote diversity and flexibility in the overall control of cellular excitability and signaling.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Ativação do Canal Iônico , Cinética , Camundongos , Modelos Moleculares , Células PC12 , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Xenopus
16.
EMBO Mol Med ; 4(7): 577-93, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22496117

RESUMO

Overcoming the resistance of tumours to chemotherapy, often due to downregulation of Bax and Bak, represents a significant clinical challenge. It is therefore important to identify novel apoptosis inducers that bypass Bax and Bak. Potassium channels are emerging as oncological targets and a crucial role of mitochondrial Kv1.3 in apoptosis has been demonstrated. Here we report for the first time that Psora-4, PAP-1 and clofazimine, three distinct membrane-permeant inhibitors of Kv1.3, induce death by directly targeting the mitochondrial channel in multiple human and mouse cancer cell lines. Importantly, these drugs activated the intrinsic apoptotic pathway also in the absence of Bax and Bak, a result in agreement with the current mechanistic model for mitochondrial Kv1.3 action. Genetic deficiency or short interfering RNA (siRNA)-mediated downregulation of Kv1.3 abrogated the effects of the drugs. Intraperitoneal injection of clofazimine reduced tumour size by 90% in an orthotopic melanoma B16F10 mouse model in vivo, while no adverse effects were observed in several healthy tissues. The study indicates that inhibition of mitochondrial Kv1.3 might be a novel therapeutic option for the induction of cancer cell death independent of Bax and Bak.


Assuntos
Apoptose/efeitos dos fármacos , Canal de Potássio Kv1.3/antagonistas & inibidores , Mitocôndrias/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Células Cultivadas , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Regulação para Baixo , Ficusina/farmacologia , Humanos , Células Jurkat , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/metabolismo , Melanoma Experimental/tratamento farmacológico , Camundongos , Proteínas Associadas a Pancreatite , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/uso terapêutico , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Inflamm Allergy Drug Targets ; 10(5): 322-42, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21745182

RESUMO

Traditional healthcare systems in China, India, Greece and the Middle East have for centuries exploited venomous creatures as a resource for medicines. This review focuses on one class of pharmacologically active compounds from venom, namely peptide toxins that target ion channels. We highlight their therapeutic potential and the specific channels they target. The field of therapeutic application is vast, including pain, inflammation, cancer, neurological disorders, cardioprotection, and autoimmune diseases. One of these peptides is in clinical use, and many others are in various stages of pre-clinical and clinical development.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Cardiotônicos/uso terapêutico , Neoplasias/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Venenos de Aranha/uso terapêutico , Toxinas Biológicas/uso terapêutico , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Cardiotônicos/farmacologia , Ensaios Clínicos como Assunto , Humanos , Canais Iônicos/antagonistas & inibidores , Terapia de Alvo Molecular , Venenos de Aranha/farmacologia , Toxinas Biológicas/farmacologia
18.
J Biol Chem ; 285(12): 9124-36, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-19965868

RESUMO

Peptide toxins found in a wide array of venoms block K(+) channels, causing profound physiological and pathological effects. Here we describe the first functional K(+) channel-blocking toxin domain in a mammalian protein. MMP23 (matrix metalloprotease 23) contains a domain (MMP23(TxD)) that is evolutionarily related to peptide toxins from sea anemones. MMP23(TxD) shows close structural similarity to the sea anemone toxins BgK and ShK. Moreover, this domain blocks K(+) channels in the nanomolar to low micromolar range (Kv1.6 > Kv1.3 > Kv1.1 = Kv3.2 > Kv1.4, in decreasing order of potency) while sparing other K(+) channels (Kv1.2, Kv1.5, Kv1.7, and KCa3.1). Full-length MMP23 suppresses K(+) channels by co-localizing with and trapping MMP23(TxD)-sensitive channels in the ER. Our results provide clues to the structure and function of the vast family of proteins that contain domains related to sea anemone toxins. Evolutionary pressure to maintain a channel-modulatory function may contribute to the conservation of this domain throughout the plant and animal kingdoms.


Assuntos
Metaloendopeptidases/química , Canais de Potássio/química , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Venenos de Cnidários/química , Evolução Molecular , Humanos , Dados de Sequência Molecular , Peptídeos/química , Filogenia , Estrutura Terciária de Proteína , Anêmonas-do-Mar/metabolismo , Homologia de Sequência de Aminoácidos , Transfecção
19.
J Clin Invest ; 118(9): 3025-37, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18688283

RESUMO

Atherosclerosis remains a major cause of death in the developed world despite the success of therapies that lower cholesterol and BP. The intermediate-conductance calcium-activated potassium channel KCa3.1 is expressed in multiple cell types implicated in atherogenesis, and pharmacological blockade of this channel inhibits VSMC and lymphocyte activation in rats and mice. We found that coronary vessels from patients with coronary artery disease expressed elevated levels of KCa3.1. In Apoe(-/-) mice, a genetic model of atherosclerosis, KCa3.1 expression was elevated in the VSMCs, macrophages, and T lymphocytes that infiltrated atherosclerotic lesions. Selective pharmacological blockade and gene silencing of KCa3.1 suppressed proliferation, migration, and oxidative stress of human VSMCs. Furthermore, VSMC proliferation and macrophage activation were reduced in KCa3.1(-/-) mice. In vivo therapy with 2 KCa3.1 blockers, TRAM-34 and clotrimazole, significantly reduced the development of atherosclerosis in aortas of Apoe(-/-) mice by suppressing VSMC proliferation and migration into plaques, decreasing infiltration of plaques by macrophages and T lymphocytes, and reducing oxidative stress. Therapeutic concentrations of TRAM-34 in mice caused no discernible toxicity after repeated dosing and did not compromise the immune response to influenza virus. These data suggest that KCa3.1 blockers represent a promising therapeutic strategy for atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Animais , Aorta/metabolismo , Aterosclerose/genética , Clotrimazol/farmacologia , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Estresse Oxidativo , Pirazóis/farmacologia , Linfócitos T/metabolismo
20.
J Biol Chem ; 283(2): 988-97, 2008 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-17984097

RESUMO

The polypeptide toxin ShK is a potent blocker of Kv1.3 potassium channels, which are crucial in the activation of human effector memory T cells (T(EM)); selective blockers constitute valuable therapeutic leads for the treatment of autoimmune diseases mediated by T(EM) cells, such as multiple sclerosis, rheumatoid arthritis, and type-1 diabetes. The critical motif on the toxin for potassium channel blockade consists of neighboring lysine and tyrosine residues. Because this motif is sufficient for activity, an ShK analogue was designed based on D-amino acids. D-allo-ShK has a structure essentially identical with that of ShK and is resistant to proteolysis. It blocked Kv1.3 with K(d) 36 nm (2,800-fold lower affinity than ShK), was 2-fold selective for Kv1.3 over Kv1.1, and was inactive against other K(+) channels tested. D-allo-ShK inhibited human T(EM) cell proliferation at 100-fold higher concentration than ShK. Its circulating half-life was only slightly longer than that of ShK, implying that renal clearance is the major determinant of its plasma levels. D-allo-ShK did not bind to the closed state of the channel, unlike ShK. Models of D-allo-ShK bound to Kv1.3 show that it can block the pore as effectively as ShK but makes different interactions with the vestibule, some of which are less favorable than for native ShK. The finding that an all-D analogue of a polypeptide toxin retains biological activity and selectivity is highly unusual. Being resistant to proteolysis and nonantigenic, this analogue should be useful in K(+) channel studies; all-d analogues with improved Kv1.3 potency and specificity may have therapeutic advantages.


Assuntos
Divisão Celular/efeitos dos fármacos , Venenos de Cnidários/toxicidade , Canal de Potássio Kv1.3/antagonistas & inibidores , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Linfócitos T/citologia , Sequência de Aminoácidos , Venenos de Cnidários/química , Humanos , Memória Imunológica , Cinética , Canal de Potássio Kv1.3/efeitos dos fármacos , Modelos Moleculares , Dados de Sequência Molecular , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Conformação Proteica , Linfócitos T/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA