Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5070, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038550

RESUMO

Cells remodel their cytoplasm with force-generating cytoskeletal motors. Their activity generates random forces that stir the cytoplasm, agitating and displacing membrane-bound organelles like the nucleus in somatic and germ cells. These forces are transmitted inside the nucleus, yet their consequences on liquid-like biomolecular condensates residing in the nucleus remain unexplored. Here, we probe experimentally and computationally diverse nuclear condensates, that include nuclear speckles, Cajal bodies, and nucleoli, during cytoplasmic remodeling of female germ cells named oocytes. We discover that growing mammalian oocytes deploy cytoplasmic forces to timely impose multiscale reorganization of nuclear condensates for the success of meiotic divisions. These cytoplasmic forces accelerate nuclear condensate collision-coalescence and molecular kinetics within condensates. Disrupting the forces decelerates nuclear condensate reorganization on both scales, which correlates with compromised condensate-associated mRNA processing and hindered oocyte divisions that drive female fertility. We establish that cytoplasmic forces can reorganize nuclear condensates in an evolutionary conserved fashion in insects. Our work implies that cells evolved a mechanism, based on cytoplasmic force tuning, to functionally regulate a broad range of nuclear condensates across scales. This finding opens new perspectives when studying condensate-associated pathologies like cancer, neurodegeneration and viral infections.


Assuntos
Nucléolo Celular , Núcleo Celular , Animais , Corpos Enovelados , Citoplasma , Feminino , Mamíferos , Oócitos
2.
Curr Biol ; 30(21): 4213-4226.e4, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32916115

RESUMO

Encapsulation of germline cells by layers of somatic cells forms the basic unit of female reproduction called primordial follicles in mammals and egg chambers in Drosophila. How germline and somatic tissues are coordinated for the morphogenesis of each separated unit remains poorly understood. Here, using improved live imaging of Drosophila ovaries, we uncovered periodic actomyosin waves at the cortex of germ cells. These contractile waves are associated with pressure release blebs, which project from germ cells into somatic cells. We demonstrate that these cortical activities, together with cadherin-based adhesion, are required to sort each germline cyst as one collective unit. Genetic perturbations of cortical contractility, bleb protrusion, or adhesion between germline and somatic cells induced encapsulation defects resulting from failures to encapsulate any germ cells, or the inclusion of too many germ cells per egg chamber, or even the mechanical split of germline cysts. Live-imaging experiments revealed that reducing contractility or adhesion in the germline reduced the stiffness of germline cysts and their proper anchoring to the somatic cells. Germline cysts can then be squeezed and passively pushed by constricting surrounding somatic cells, resulting in cyst splitting and cyst collisions during encapsulation. Increasing germline cysts activity or blocking somatic cell constriction movements can reveal active forward migration of germline cysts. Our results show that germ cells play an active role in physical coupling with somatic cells to produce the female gamete.


Assuntos
Actomiosina/metabolismo , Movimento Celular/fisiologia , Oogênese/fisiologia , Folículo Ovariano/embriologia , Animais , Adesão Celular/fisiologia , Drosophila melanogaster , Feminino , Microscopia Intravital , Modelos Animais , Folículo Ovariano/diagnóstico por imagem , Folículo Ovariano/metabolismo
3.
Curr Biol ; 27(21): 3350-3358.e3, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29107549

RESUMO

During epithelial cell proliferation, planar alignment of the mitotic spindle allows the daughter cells to stay within the epithelium. Previous work has identified cortical cues that regulate spindle orientation and the division axis [1, 2]. One such cue is cortical Pins (LGN in vertebrates) [3-6], which recruits the conserved Mud/NuMA protein and the dynein/dynactin complex to the cortex. The dynein/dynactin motor complex pulls astral microtubules to orient the spindle. Cortical Pins can therefore dictate the division axis. In addition to cortical cues, cell shape can also serve as a division orientation cue [7-9]. Here, we investigated the interplay between cortical cues and cell shape in a proliferating tissue. We analyzed division orientation in the first mitotic divisions of the early Drosophila embryo, where groups of epithelial cells synchronously divide. Using chemical inhibitors, knockdowns, and mutants with known deficits in motor activity, we showed that the myosin 2 motor is required to orient cell division in the plane of a columnar epithelium. Disrupting myosin activity caused the division axis to orient perpendicular to the epithelial plane. This effect was independent of Pins cortical localization, which became uncoupled from spindle orientation. Instead, myosin motor activity was required for the formation of the actomyosin cortex and for cell rounding upon mitotic entry. We propose that mitotic cell rounding in columnar epithelia allows cells to properly interpret cortical cues that orient the spindle. In the absence of mitotic rounding, geometric cues imposed by tight cell packing prevail and cells divide along their long apical-basal axis.


Assuntos
Divisão Celular/fisiologia , Proliferação de Células/fisiologia , Forma Celular/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Células Epiteliais/citologia , Mitose/fisiologia , Miosina Tipo II/metabolismo , Fuso Acromático/metabolismo , Amidas/farmacologia , Animais , Polaridade Celular/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Inibidores Enzimáticos/farmacologia , Células Epiteliais/metabolismo , Proteínas de Membrana/genética , Cadeias Pesadas de Miosina/genética , Miosina Tipo II/genética , Piridinas/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo
4.
Development ; 144(10): 1876-1886, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28432215

RESUMO

Tissue folding promotes three-dimensional (3D) form during development. In many cases, folding is associated with myosin accumulation at the apical surface of epithelial cells, as seen in the vertebrate neural tube and the Drosophila ventral furrow. This type of folding is characterized by constriction of apical cell surfaces, and the resulting cell shape change is thought to cause tissue folding. Here, we use quantitative microscopy to measure the pattern of transcription, signaling, myosin activation and cell shape in the Drosophila mesoderm. We found that cells within the ventral domain accumulate different amounts of active apical non-muscle myosin 2 depending on the distance from the ventral midline. This gradient in active myosin depends on a newly quantified gradient in upstream signaling proteins. A 3D continuum model of the embryo with induced contractility demonstrates that contractility gradients, but not contractility per se, promote changes to surface curvature and folding. As predicted by the model, experimental broadening of the myosin domain in vivo disrupts tissue curvature where myosin is uniform. Our data argue that apical contractility gradients are important for tissue folding.


Assuntos
Actomiosina/fisiologia , Gástrula/citologia , Gástrula/metabolismo , Gastrulação , Morfogênese/fisiologia , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Animais , Animais Geneticamente Modificados , Forma Celular , Drosophila/embriologia , Drosophila/genética , Drosophila/metabolismo , Embrião não Mamífero , Gastrulação/genética , Miosinas/química , Concentração Osmolar
5.
Dev Cell ; 35(6): 685-97, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26688336

RESUMO

The propagation of force in epithelial tissues requires that the contractile cytoskeletal machinery be stably connected between cells through E-cadherin-containing adherens junctions. In many epithelial tissues, the cells' contractile network is positioned at a distance from the junction. However, the mechanism or mechanisms that connect the contractile networks to the adherens junctions, and thus mechanically connect neighboring cells, are poorly understood. Here, we identified the role for F-actin turnover in regulating the contractile cytoskeletal network's attachment to adherens junctions. Perturbing F-actin turnover via gene depletion or acute drug treatments that slow F-actin turnover destabilized the attachment between the contractile actomyosin network and adherens junctions. Our work identifies a critical role for F-actin turnover in connecting actomyosin to intercellular junctions, defining a dynamic process required for the stability of force balance across intercellular contacts in tissues.


Assuntos
Actinas/metabolismo , Junções Aderentes/metabolismo , Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Epitélio/metabolismo , Animais , Caderinas/genética , Drosophila , Junções Intercelulares/metabolismo
6.
Neural Dev ; 6: 29, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21689430

RESUMO

BACKGROUND: The ventral midbrain contains a diverse array of neurons, including dopaminergic neurons of the ventral tegmental area (VTA) and substantia nigra (SN) and neurons of the red nucleus (RN). Dopaminergic and RN neurons have been shown to arise from ventral mesencephalic precursors that express Sonic Hedgehog (Shh). However, Shh expression, which is initially confined to the mesencephalic ventral midline, expands laterally and is then downregulated in the ventral midline. In contrast, expression of the Hedgehog target gene Gli1 initiates in the ventral midline prior to Shh expression, but after the onset of Shh expression it is expressed in precursors lateral to Shh-positive cells. Given these dynamic gene expression patterns, Shh and Gli1 expression could delineate different progenitor populations at distinct embryonic time points. RESULTS: We employed genetic inducible fate mapping (GIFM) to investigate whether precursors that express Shh (Shh-GIFM) or transduce Shh signaling (Gli1-GIFM) at different time points give rise to different ventral midbrain cell types. We find that precursors restricted to the ventral midline are labeled at embryonic day (E)7.5 with Gli1-GIFM, and with Shh-GIFM at E8.5. These precursors give rise to all subtypes of midbrain dopaminergic neurons and the anterior RN. A broader domain of progenitors that includes the ventral midline is marked with Gli1-GIFM at E8.5 and with Shh-GIFM at E9.5; these fate-mapped cells also contribute to all midbrain dopaminergic subtypes and to the entire RN. In contrast, a lateral progenitor domain that is labeled with Gli1-GIFM at E9.5 and with Shh-GIFM at E11.5 has a markedly reduced potential to give rise to the RN and to SN dopaminergic neurons, and preferentially gives rise to the ventral-medial VTA. In addition, cells derived from Shh- and Gli1-expressing progenitors located outside of the ventral midline give rise to astrocytes. CONCLUSIONS: We define a ventral midbrain precursor map based on the timing of Gli1 and Shh expression, and suggest that the diversity of midbrain dopaminergic neurons is at least partially determined during their precursor stage when their medial-lateral position, differential gene expression and the time when they leave the ventricular zone influence their fate decisions.


Assuntos
Proteínas Hedgehog/genética , Proteínas Hedgehog/fisiologia , Mesencéfalo/fisiologia , Células-Tronco Neurais/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Animais , Astrócitos/fisiologia , Mapeamento Encefálico , Diferenciação Celular/genética , Dopamina/fisiologia , Feminino , Imunofluorescência , Hibridização In Situ , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/fisiologia , Mesencéfalo/citologia , Mesencéfalo/embriologia , Camundongos , Neurônios/fisiologia , Nervo Oculomotor/embriologia , Nervo Oculomotor/crescimento & desenvolvimento , Gravidez , RNA/biossíntese , RNA/genética , Núcleo Rubro/citologia , Núcleo Rubro/embriologia , Núcleo Rubro/fisiologia , Substância Negra/embriologia , Substância Negra/crescimento & desenvolvimento , Substância Negra/fisiologia , Proteína GLI1 em Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA