Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Sci Signal ; 15(763): eabn2743, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473049

RESUMO

Increased proliferation and survival of cells in small pulmonary arteries (PAs) drive pulmonary arterial hypertension (PAH). Because cell growth mediated by the mTOR-containing mTORC1 complex is inhibited by tuberous sclerosis complex 2 (TSC2), we investigated the role of this GTPase-activating protein in PAH pathology. TSC2 abundance was decreased in remodeled small PAs and PA vascular smooth muscle cells (PAVSMCs) from patients with PAH or from rodent pulmonary hypertension (PH) models, as well as PAVSMCs maintained on substrates that reproduced pathology-induced stiffness. Accordingly, mice with smooth muscle-specific reduction in TSC2 developed PH. At the molecular level, decreased TSC2 abundance led to stiffness-induced PAVSMC proliferation, increased abundance of the mechanosensitive transcriptional coactivators YAP/TAZ, and enhanced mTOR kinase activity. Moreover, extracellular matrix (ECM) produced by TSC2-deficient PAVSMCs stimulated the proliferation of nondiseased PA adventitial fibroblasts and PAVSMCs through fibronectin and its receptor, the α5ß1 integrin. Reconstituting TSC2 in PAVSMCs from patients with PAH through overexpression or treatment with the SIRT1 activator SRT2104 decreased YAP/TAZ abundance, mTOR activity, and ECM production, as well as inhibited proliferation and induced apoptosis. In two rodent models of PH, SRT2104 treatment restored TSC2 abundance, attenuated pulmonary vascular remodeling, and ameliorated PH. Thus, TSC2 in PAVSMCs integrates ECM composition and stiffness with pro-proliferative and survival signaling, and restoring TSC2 abundance could be an attractive therapeutic option to treat PH.


Assuntos
Hipertensão Pulmonar , Esclerose Tuberosa , Animais , Camundongos , Proliferação de Células , Matriz Extracelular , Hipertensão Pulmonar/genética , Humanos
2.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200497

RESUMO

Left ventricular (LV) heart failure (HF) is a significant and increasing cause of death worldwide. HF is characterized by myocardial remodeling and excessive fibrosis. Transcriptional co-activator Yes-associated protein (Yap), the downstream effector of HIPPO signaling pathway, is an essential factor in cardiomyocyte survival; however, its status in human LV HF is not entirely elucidated. Here, we report that Yap is elevated in LV tissue of patients with HF, and is associated with down-regulation of its upstream inhibitor HIPPO component large tumor suppressor 1 (LATS1) activation as well as upregulation of the fibrosis marker connective tissue growth factor (CTGF). Applying the established profibrotic combined stress of TGFß and hypoxia to human ventricular cardiac fibroblasts in vitro increased Yap protein levels, down-regulated LATS1 activation, increased cell proliferation and collagen I production, and decreased ribosomal protein S6 and S6 kinase phosphorylation, a hallmark of mTOR activation, without any significant effect on mTOR and raptor protein expression or phosphorylation of mTOR or 4E-binding protein 1 (4EBP1), a downstream effector of mTOR pathway. As previously reported in various cell types, TGFß/hypoxia also enhanced cardiac fibroblast Akt and ERK1/2 phosphorylation, which was similar to our observation in LV tissues from HF patients. Further, depletion of Yap reduced TGFß/hypoxia-induced cardiac fibroblast proliferation and Akt phosphorylation at Ser 473 and Thr308, without any significant effect on TGFß/hypoxia-induced ERK1/2 activation or reduction in S6 and S6 kinase activities. Taken together, these data demonstrate that Yap is a mediator that promotes human cardiac fibroblast proliferation and suggest its possible contribution to remodeling of the LV, opening the door to further studies to decipher the cell-specific roles of Yap signaling in human HF.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proliferação de Células , Insuficiência Cardíaca/patologia , Miofibroblastos/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Estudos de Casos e Controles , Células Cultivadas , Feminino , Insuficiência Cardíaca/metabolismo , Humanos , Masculino , Miofibroblastos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição/genética , Ativação Transcricional , Proteínas de Sinalização YAP
3.
J Clin Invest ; 128(9): 4025-4043, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30102256

RESUMO

Impaired lymphangiogenesis is a complication of chronic complex diseases, including diabetes. VEGF-C/VEGFR3 signaling promotes lymphangiogenesis, but how this pathway is affected in diabetes remains poorly understood. We previously demonstrated that loss of epsins 1 and 2 in lymphatic endothelial cells (LECs) prevented VEGF-C-induced VEGFR3 from endocytosis and degradation. Here, we report that diabetes attenuated VEGF-C-induced lymphangiogenesis in corneal micropocket and Matrigel plug assays in WT mice but not in mice with inducible lymphatic-specific deficiency of epsins 1 and 2 (LEC-iDKO). Consistently, LECs isolated from diabetic LEC-iDKO mice elevated in vitro proliferation, migration, and tube formation in response to VEGF-C over diabetic WT mice. Mechanistically, ROS produced in diabetes induced c-Src-dependent but VEGF-C-independent VEGFR3 phosphorylation, and upregulated epsins through the activation of transcription factor AP-1. Augmented epsins bound to and promoted degradation of newly synthesized VEGFR3 in the Golgi, resulting in reduced availability of VEGFR3 at the cell surface. Preclinically, the loss of lymphatic-specific epsins alleviated insufficient lymphangiogenesis and accelerated the resolution of tail edema in diabetic mice. Collectively, our studies indicate that inhibiting expression of epsins in diabetes protects VEGFR3 against degradation and ameliorates diabetes-triggered inhibition of lymphangiogenesis, thereby providing a novel potential therapeutic strategy to treat diabetic complications.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/deficiência , Diabetes Mellitus Experimental/metabolismo , Linfangiogênese/fisiologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Proteína Tirosina Quinase CSK , Diabetes Mellitus Experimental/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Camundongos , Camundongos Knockout , Modelos Biológicos , Proteólise , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Quinases da Família src/metabolismo
4.
Am J Respir Crit Care Med ; 194(7): 866-877, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27119551

RESUMO

RATIONALE: Enhanced proliferation and impaired apoptosis of pulmonary arterial vascular smooth muscle cells (PAVSMCs) are key pathophysiologic components of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). OBJECTIVES: To determine the role and therapeutic relevance of HIPPO signaling in PAVSMC proliferation/apoptosis imbalance in PAH. METHODS: Primary distal PAVSMCs, lung tissue sections from unused donor (control) and idiopathic PAH lungs, and rat and mouse models of SU5416/hypoxia-induced pulmonary hypertension (PH) were used. Immunohistochemical, immunocytochemical, and immunoblot analyses and transfection, infection, DNA synthesis, apoptosis, migration, cell count, and protein activity assays were performed in this study. MEASUREMENTS AND MAIN RESULTS: Immunohistochemical and immunoblot analyses demonstrated that the HIPPO central component large tumor suppressor 1 (LATS1) is inactivated in small remodeled pulmonary arteries (PAs) and distal PAVSMCs in idiopathic PAH. Molecular- and pharmacology-based analyses revealed that LATS1 inactivation and consequent up-regulation of its reciprocal effector Yes-associated protein (Yap) were required for activation of mammalian target of rapamycin (mTOR)-Akt, accumulation of HIF1α, Notch3 intracellular domain and ß-catenin, deficiency of proapoptotic Bim, increased proliferation, and survival of human PAH PAVSMCs. LATS1 inactivation and up-regulation of Yap increased production and secretion of fibronectin that up-regulated integrin-linked kinase 1 (ILK1). ILK1 supported LATS1 inactivation, and its inhibition reactivated LATS1, down-regulated Yap, suppressed proliferation, and promoted apoptosis in PAH, but not control PAVSMCs. PAVSM in small remodeled PAs from rats and mice with SU5416/hypoxia-induced PH showed down-regulation of LATS1 and overexpression of ILK1. Treatment of mice with selective ILK inhibitor Cpd22 at Days 22-35 of SU5416/hypoxia exposure restored LATS1 signaling and reduced established pulmonary vascular remodeling and PH. CONCLUSIONS: These data report inactivation of HIPPO/LATS1, self-supported via Yap-fibronectin-ILK1 signaling loop, as a novel mechanism of self-sustaining proliferation and apoptosis resistance of PAVSMCs in PAH and suggest a new potential target for therapeutic intervention.

6.
Circ Res ; 118(6): 957-969, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26879230

RESUMO

RATIONALE: We previously reported that vascular endothelial growth factor (VEGF)-induced binding of VEGF receptor 2 (VEGFR2) to epsins 1 and 2 triggers VEGFR2 degradation and attenuates VEGF signaling. The epsin ubiquitin interacting motif (UIM) was shown to be required for the interaction with VEGFR2. However, the molecular determinants that govern how epsin specifically interacts with and regulates VEGFR2 were unknown. OBJECTIVE: The goals for the present study were as follows: (1) to identify critical molecular determinants that drive the specificity of the epsin and VEGFR2 interaction and (2) to ascertain whether such determinants were critical for physiological angiogenesis in vivo. METHODS AND RESULTS: Structural modeling uncovered 2 novel binding surfaces within VEGFR2 that mediate specific interactions with epsin UIM. Three glutamic acid residues in epsin UIM were found to interact with residues in VEGFR2. Furthermore, we found that the VEGF-induced VEGFR2-epsin interaction promoted casitas B-lineage lymphoma-mediated ubiquitination of epsin, and uncovered a previously unappreciated ubiquitin-binding surface within VEGFR2. Mutational analysis revealed that the VEGFR2-epsin interaction is supported by VEGFR2 interacting specifically with the UIM and with ubiquitinated epsin. An epsin UIM peptide, but not a mutant UIM peptide, potentiated endothelial cell proliferation, migration and angiogenic properties in vitro, increased postnatal retinal angiogenesis, and enhanced VEGF-induced physiological angiogenesis and wound healing. CONCLUSIONS: Distinct residues in the epsin UIM and VEGFR2 mediate specific interactions between epsin and VEGFR2, in addition to UIM recognition of ubiquitin moieties on VEGFR2. These novel interactions are critical for pathophysiological angiogenesis, suggesting that these sites could be selectively targeted by therapeutics to modulate angiogenesis.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Neovascularização Fisiológica/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/genética , Sequência de Aminoácidos , Animais , Sistemas de Liberação de Medicamentos/tendências , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
7.
J Clin Invest ; 125(12): 4349-64, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26571402

RESUMO

Tumor angiogenesis is critical for cancer progression. In multiple murine models, endothelium-specific epsin deficiency abrogates tumor progression by shifting the balance of VEGFR2 signaling toward uncontrolled tumor angiogenesis, resulting in dysfunctional tumor vasculature. Here, we designed a tumor endothelium-targeting chimeric peptide (UPI) for the purpose of inhibiting endogenous tumor endothelial epsins by competitively binding activated VEGFR2. We determined that the UPI peptide specifically targets tumor endothelial VEGFR2 through an unconventional binding mechanism that is driven by unique residues present only in the epsin ubiquitin-interacting motif (UIM) and the VEGFR2 kinase domain. In murine models of neoangiogenesis, UPI peptide increased VEGF-driven angiogenesis and neovascularization but spared quiescent vascular beds. Further, in tumor-bearing mice, UPI peptide markedly impaired functional tumor angiogenesis, tumor growth, and metastasis, resulting in a notable increase in survival. Coadministration of UPI peptide with cytotoxic chemotherapeutics further sustained tumor inhibition. Equipped with localized tumor endothelium-specific targeting, our UPI peptide provides potential for an effective and alternative cancer therapy.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/farmacologia , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Peptídeos/farmacologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Animais , Camundongos , Camundongos Knockout , Metástase Neoplásica , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Peptídeos/genética , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
Nat Commun ; 6: 6380, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25871009

RESUMO

Uncontrolled canonical Wnt signalling supports colon epithelial tumour expansion and malignant transformation. Understanding the regulatory mechanisms involved is crucial for elucidating the pathogenesis of and will provide new therapeutic targets for colon cancer. Epsins are ubiquitin-binding adaptor proteins upregulated in several human cancers; however, the involvement of epsins in colon cancer is unknown. Here we show that loss of intestinal epithelial epsins protects against colon cancer by significantly reducing the stability of the crucial Wnt signalling effector, dishevelled (Dvl2), and impairing Wnt signalling. Consistently, epsins and Dvl2 are correspondingly upregulated in colon cancer. Mechanistically, epsin binds Dvl2 via its epsin N-terminal homology domain and ubiquitin-interacting motifs and prohibits Dvl2 polyubiquitination and degradation. Our findings reveal an unconventional role for epsins in stabilizing Dvl2 and potentiating Wnt signalling in colon cancer cells to ensure robust colon cancer progression. The pro-carcinogenic role of Epsins suggests that they are potential therapeutic targets to combat colon cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Adenocarcinoma/genética , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Fosfoproteínas/genética , Via de Sinalização Wnt/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/antagonistas & inibidores , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Adenocarcinoma/induzido quimicamente , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Azoximetano , Sítios de Ligação , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Colite/patologia , Colo/metabolismo , Colo/patologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Proteínas Desgrenhadas , Células HT29 , Humanos , Camundongos , Camundongos Knockout , Fosfoproteínas/metabolismo , Cultura Primária de Células , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Dodecilsulfato de Sódio , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Arterioscler Thromb Vasc Biol ; 34(2): 331-337, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24311377

RESUMO

OBJECTIVE: We previously showed that endothelial epsin deficiency caused elevated vascular endothelial growth factor receptor 2 (VEGFR2) and enhanced VEGF signaling, resulting in aberrant tumor angiogenesis and reduced tumor growth in adult mice. However, direct evidence demonstrating that endothelial epsins regulate angiogenesis specifically through VEGFR2 downregulation is still lacking. In addition, whether the lack of epsins causes abnormal angiogenesis during embryonic development remains unclear. APPROACH AND RESULTS: A novel strain of endothelial epsin-deleted mice that are heterozygous for VEGFR2 (Epn1(fl/fl); Epn2(-/-); Flk(fl/+); iCDH5 Cre mice) was created. Analysis of embryos at different developmental stages showed that deletion of epsins caused defective embryonic angiogenesis and retarded embryo development. In vitro angiogenesis assays using isolated primary endothelial cells (ECs) from Epn1(fl/fl); Epn2(-/-); iCDH5 Cre (EC-iDKO) and Epn1(fl/fl); Epn2(-/-); Flk(fl/+); iCDH5 Cre (EC-iDKO-Flk(fl/+)) mice demonstrated that VEGFR2 reduction in epsin-depleted cells was sufficient to restore normal VEGF signaling, EC proliferation, EC migration, and EC network formation. These findings were complemented by in vivo wound healing, inflammatory angiogenesis, and tumor angiogenesis assays in which reduction of VEGFR2 was sufficient to rescue abnormal angiogenesis in endothelial epsin-deleted mice. CONCLUSIONS: Our results provide the first genetic demonstration that epsins function specifically to downregulate VEGFR2 by mediating activated VEGFR2 internalization and degradation and that genetic reduction of VEGFR2 level protects against excessive angiogenesis caused by epsin loss. Our findings indicate that epsins may be a potential therapeutic target in conditions in which tightly regulated angiogenesis is crucial, such as in diabetic wound healing and tumors.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/deficiência , Carcinoma Pulmonar de Lewis/irrigação sanguínea , Carcinoma Pulmonar de Lewis/metabolismo , Angiopatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , Neovascularização Patológica , Neovascularização Fisiológica , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/deficiência , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/patologia , Modelos Animais de Doenças , Regulação para Baixo , Células Endoteliais/patologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica/genética , Transdução de Sinais , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Cicatrização
10.
ISRN Oncol ; 2013: 420597, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23691361

RESUMO

Epsins have an important role in mediating clathrin-mediated endocytosis of ubiquitinated cell surface receptors. The potential role for epsins in tumorigenesis and cancer metastasis by regulating intracellular signaling pathways has largely not been explored. Epsins are reportedly upregulated in several types of cancer including human skin, lung, and canine mammary cancers. However, whether their expression is elevated in prostate cancer is unknown. In this study, we investigated the potential role of epsins in prostate tumorigenesis using the wild type or epsin-deficient human prostate cancer cells, LNCaP, in a human xenograft model, and the spontaneous TRAMP mouse model in wild type or epsin-deficient background. Here, we reported that the expression of epsins 1 and 2 is upregulated in both human and mouse prostate cancer cells and cancerous tissues. Consistent with upregulation of epsins in prostate tumors, we discovered that depletion of epsins impaired tumor growth in both the human LNCaP xenograft and the TRAMP mouse prostate. Furthermore, epsin depletion significantly prolonged survival in the TRAMP mouse model. In summary, our findings suggest that epsins may act as oncogenic proteins to promote prostate tumorigenesis and that depletion or inhibition of epsins may provide a novel therapeutic target for future prostate cancer therapies.

11.
J Can Res Updates ; 2(3): 144-150, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24501612

RESUMO

Tumor angiogenesis, tumor cell proliferation, and tumor cell migration result from an accumulation of oncogenic mutations that alter protein expression and the regulation of various signaling cascades. Epsins, a small family of clathrin-mediated endocytic adaptor proteins, are reportedly upregulated in a variety of cancers. Importantly, loss of epsins protects against tumorigenesis, thus supporting an oncogenic role for epsins in cancer. Although a clear relationship between epsins and cancer has evolved, the importance of this relationship with regards to cancer progression and anti-cancer therapies remains unclear. In this review, we summarize epsins' role as endocytic adaptors that modulate VEGF and Notch signaling through the regulated internalization of VEGFR2 and trans-endocytosis of Notch receptors. As both VEGF and Notch signaling have significant implications in angiogenesis, we focus on the newly identified role for epsins in tumor angiogenesis. In addition to epsins' canonical role in receptor-mediated endocytosis, and the resulting downstream signaling regulation, we discuss the non-canonical role of epsins as regulators of small GTPases and the implications this has on tumor cell proliferation and invasion. Given epsins' identified roles in tumor angiogenesis, tumor cell proliferation, and tumor cell invasion, we predict that the investigative links between epsins and cancer will provide new insights into the importance of endocytic adaptors and their potential use as future therapeutic targets.

12.
J Clin Invest ; 122(12): 4424-38, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23187125

RESUMO

Epsins are a family of ubiquitin-binding, endocytic clathrin adaptors. Mice lacking both epsins 1 and 2 (Epn1/2) die at embryonic day 10 and exhibit an abnormal vascular phenotype. To examine the angiogenic role of endothelial epsins, we generated mice with constitutive or inducible deletion of Epn1/2 in vascular endothelium. These mice exhibited no abnormal phenotypes under normal conditions, suggesting that lack of endothelial epsins 1 and 2 did not affect normal blood vessels. In tumors, however, loss of epsins 1 and 2 resulted in disorganized vasculature, significantly increased vascular permeability, and markedly retarded tumor growth. Mechanistically, we show that VEGF promoted binding of epsin to ubiquitinated VEGFR2. Loss of epsins 1 and 2 specifically impaired endocytosis and degradation of VEGFR2, which resulted in excessive VEGF signaling that compromised tumor vascular function by exacerbating nonproductive leaky angiogenesis. This suggests that tumor vasculature requires a balance in VEGF signaling to provide sufficient productive angiogenesis for tumor development and that endothelial epsins 1 and 2 negatively regulate the output of VEGF signaling. Promotion of excessive VEGF signaling within tumors via a block of epsin 1 and 2 function may represent a strategy to prevent normal angiogenesis in cancer patients who are resistant to anti-VEGF therapies.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Animais , Permeabilidade Capilar , Carcinoma Pulmonar de Lewis/irrigação sanguínea , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Movimento Celular , Endocitose , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Junções Intercelulares/metabolismo , Junções Intercelulares/patologia , Masculino , Camundongos , Camundongos Knockout , Transplante de Neoplasias , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Proteólise , Carga Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
13.
Reprod Sci ; 16(11): 1062-71, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19767538

RESUMO

Overexpression of human telomerase reverse transcriptase (hTERT) has facilitated establishing in vitro model systems for biological research. The plasmid containing hTERT gene was stably transfected into ULTR cells, a retroviral transformed human uterine leiomyomatous smooth-muscle cell line. Cells that express hTERT, termed as ULTR-hT, shared the morphological characteristics of the parental proliferative ULTR cells. They expressed a set of smooth-muscle-specific genes and had increased proliferation rate and prolonged lifespan. Quantitative real-time polymerase chain reaction (PCR) analysis revealed a correlation of proliferation rates of ULTR-hT clonal cells with the level of hTERT expression. ULTRhT cells also preserved expression of estrogen, progesterone, and oxytocin receptor genes, confirming a myometrial phenotype. Expression of angiotensin II receptors and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase isoforms were also preserved. Our finding suggests that ULTR-hT cells can be a useful in vitro model for studying human myometrium differentiation both in pregnancy and pathological growth.


Assuntos
Linhagem Celular Tumoral/citologia , Proliferação de Células , Telomerase/genética , Análise de Variância , Western Blotting , Forma Celular , Receptor alfa de Estrogênio/metabolismo , Feminino , Imunofluorescência , Humanos , Miométrio/citologia , Miométrio/metabolismo , Receptores de Ocitocina/metabolismo , Receptores de Progesterona/metabolismo , Retroviridae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
14.
J Clin Invest ; 119(4): 976-85, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19287093

RESUMO

How Ca2+-dependent signaling effectors are regulated in cardiomyocytes, given the extreme cytoplasmic Ca2+ concentration changes that underlie contraction, remains unknown. Cardiomyocyte plasma membrane Ca2+-ATPase (PMCA) extrudes Ca2+ but has little effect on excitation-contraction coupling, suggesting its potential role in controlling Ca2+-dependent signaling effectors such as calcineurin. We generated cardiac-specific inducible PMCA4b transgenic mice that displayed normal global Ca2+ transient and cellular contraction levels and reduced cardiac hypertrophy following transverse aortic constriction (TAC) or phenylephrine/Ang II infusion, but showed no reduction in exercise-induced hypertrophy. Transgenic mice were protected from decompensation and fibrosis following long-term TAC. The PMCA4b transgene reduced the hypertrophic augmentation associated with transient receptor potential canonical 3 channel overexpression, but not that associated with activated calcineurin. Furthermore, Pmca4 gene-targeted mice showed increased cardiac hypertrophy and heart failure events after TAC. Physical associations between PMCA4b and calcineurin were enhanced by TAC and by agonist stimulation of cultured neonatal cardiomyocytes. PMCA4b reduced calcineurin nuclear factor of activated T cell-luciferase activity after TAC and in cultured neonatal cardiomyocytes after agonist stimulation. PMCA4b overexpression inhibited cultured cardiomyocyte hypertrophy following agonist stimulation, but much less so in a Ca2+ pumping-deficient PMCA4b mutant. Thus, Pmca4b likely reduces the local Ca2+ signals involved in reactive cardiomyocyte hypertrophy via calcineurin regulation.


Assuntos
Inibidores de Calcineurina , Cardiomegalia/enzimologia , Cardiomegalia/prevenção & controle , ATPases Transportadoras de Cálcio da Membrana Plasmática/fisiologia , Animais , Sinalização do Cálcio , Cardiomegalia/genética , Cardiomegalia/patologia , Membrana Celular/enzimologia , Células Cultivadas , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores de Transcrição NFATC/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Int J Cancer ; 113(5): 719-29, 2005 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-15499623

RESUMO

Hepatocellular carcinoma is usually preceded by chronic inflammation. However, the molecular mechanism in hepatocarcinogenesis is not well known. Recently, we reported that mitochondrial dysfunction plays an important role in hepatocarcinogenesis via the production of free radicals. Furthermore, we proved that L-carnitine effectively protects mitochondrial function in vivo. Therefore, we investigated whether long-term administration of L-carnitine could prevent hepatitis and subsequent hepatocellular carcinoma in Long-Evans Cinnamon rats that are often analyzed as a model of hepatocarcinogenesis. The results indicated that oxidative stress elicited from abnormally accumulated copper increased the amount of free fatty acids, thereby inducing mitochondrial dysfunction, resulting in cell death and enhanced secondary generation of reactive oxygen species, which were significantly inhibited by carnitine treatment. Finally, the occurrence of placental glutathione S-transferase-positive foci as a marker for preneoplastic lesions and hepatocarcinogenesis were significantly inhibited by L-carnitine. These facts suggest that mitochondrial injury plays an essential role in the development of hepatocarcinogenesis and that the clinical use of carnitine has excellent therapeutic potential in individuals with chronic hepatitis.


Assuntos
Carcinoma Hepatocelular/prevenção & controle , Carnitina/uso terapêutico , Neoplasias Hepáticas/prevenção & controle , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo , Animais , Apoptose/efeitos dos fármacos , Cobre/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Glutationa Transferase/metabolismo , Hepatite/prevenção & controle , Masculino , Placenta/enzimologia , Ratos , Ratos Endogâmicos LEC , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
16.
Free Radic Res ; 38(4): 333-41, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15190930

RESUMO

BACKGROUND: Although cis-diamminedichloroplatinum (II) (cisplatin) is an effective anticancer agent, its clinical use is highly limited predominantly due to its adverse effects on renal functions. The present work examined the therapeutic potential of edaravone, a free radical scavenger, for inhibiting cisplatin-induced renal injury. METHODS: Edaravone, 3-methyl-1-phenyl-pyrazolin-5-one, was administrated intravenously at a dose of 30 mg/kg of body weight to male Wistar rats (200-220 g). After 30 min, cisplatin was injected intraperitoneally at a dose of 5 mg/kg of body weight. At the indicated times after the treatment, functions and histological changes of the kidney were analyzed. To test the therapeutic potential of edaravone in chemotherapy, its effect on the anticancer action of cisplatin was examined in ascites cancer-bearing rats. RESULTS: We found that cisplatin rapidly impaired the respiratory function and DNA of mitochondria in renal proximal tubules, thereby inducing apoptosis of tubular epithelial cells within a few days and chronic renal dysfunction associated with multiple cysts one-year after the administration. Administration of edaravone inhibited the cisplatin-induced acute injury of mitochondria and their DNA and renal epithelial cell apoptosis as well as the occurrence of chronic renal dysfunction and multiple cyst formation. The anticancer effect of cisplatin remained unaffected by intravenous administrating of edaravone. CONCLUSIONS: These results indicate that edaravone may have therapeutic potential for inhibiting the acute and chronic injury of the kidney induced by cisplatin.


Assuntos
Antipirina/análogos & derivados , Antipirina/uso terapêutico , Cisplatino/uso terapêutico , Nefropatias/tratamento farmacológico , Rim/lesões , Animais , Antineoplásicos/farmacologia , Apoptose , Peso Corporal/efeitos dos fármacos , Cisplatino/farmacologia , DNA/metabolismo , DNA Mitocondrial/metabolismo , Edaravone , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/uso terapêutico , Radicais Livres , Rim/patologia , Masculino , Mitocôndrias/metabolismo , Consumo de Oxigênio , Ratos , Ratos Wistar , Fatores de Tempo
17.
Carcinogenesis ; 25(11): 2101-5, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15205363

RESUMO

To elucidate the role of nitric oxide (NO) in tumor cell growth in vivo, dynamic aspects of the growth of Ehrlich ascites tumor cells (EATCs) were studied in wild-type (WT) mice and in an inducible strain of NO synthase (iNOS)-deficient (iNOS(-/-)) mice. Kinetic analysis showed that the rate of free tumor cell growth in the peritoneal cavity was significantly higher in the iNOS(-/-) mice than in the WT mice. In contrast, EATCs inoculated subcutaneously rapidly grew and formed a solid tumor in WT mice, but failed to grow in iNOS(-/-) mice. These results clearly indicate that NO generated by iNOS predominantly inhibits the growth of tumor cells in their free form, but enhances the growth of solid tumors.


Assuntos
Carcinoma de Ehrlich/patologia , Divisão Celular/fisiologia , Óxido Nítrico Sintase Tipo II/deficiência , Óxido Nítrico Sintase Tipo II/genética , Neoplasias Peritoneais/patologia , Animais , Fragmentação do DNA , Cinética , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/metabolismo
18.
Arch Biochem Biophys ; 411(1): 63-72, 2003 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-12590924

RESUMO

Although nitric oxide (NO) plays important roles in pathogenesis of various liver diseases, the role of NO in the in vivo mechanism of Fas-mediated fulminant hepatitis is not known well. The effect of anti-Fas antibody (Jo2) on the survival, liver function, and histology was analyzed in wild-type (WT) and inducible NO synthase (iNOS)-deficient (iNOS(-/-)) mice. Upon intravenous injection of a lethal dose of Jo2, WT mice died on fulminant hepatitis within 12h. Under identical conditions, however, iNOS(-/-) mice showed strong resistance to Jo2 and survived without revealing liver injury. In conclusion, these observations suggest that regulation of NO metabolism may have therapeutic potential in the treatment of patients with fulminant hepatitis.


Assuntos
Anticorpos/toxicidade , Apoptose/fisiologia , Hepatite Animal/induzido quimicamente , Falência Hepática/induzido quimicamente , Fígado/patologia , Óxido Nítrico Sintase/deficiência , Óxido Nítrico Sintase/fisiologia , Receptor fas/imunologia , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , DNA Mitocondrial/genética , Morte , Hepatite Animal/imunologia , Hepatite Animal/patologia , Fígado/enzimologia , Falência Hepática/imunologia , Falência Hepática/patologia , Camundongos , Camundongos Knockout , Óxido Nítrico/sangue , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo II , Peroxidase/metabolismo
19.
Arch Biochem Biophys ; 405(1): 55-64, 2002 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12176057

RESUMO

Although cis-diamminedichloroplatinum (II) (cisplatin) is a potent anticancer drug, clinical use of this agent is highly limited predominantly because of its strong side effects on the kidney and gastrointestinal tracts. We found that cisplatin impaired respiratory function and DNA of mitochondria in renal proximal tubules and small intestinal mucosal cells, thereby inducing apoptosis of epithelial cells. Cisplatin-induced mitochondrial dysfunction and DNA (mtDNA) injury, lipid peroxidation, and apoptosis of epithelial cells in the kidney and small intestine were strongly inhibited by L-carnitine. However, carnitine had no appreciable effect on the tumoricidal action of cisplatin against cancer cells inoculated in the peritoneal cavity. These results indicate that L-carnitine may have therapeutic potential for inhibiting the side effects of cisplatin and other anticancer agents in the kidney and small intestine.


Assuntos
Carnitina/farmacologia , Cisplatino/farmacologia , Intestino Delgado/efeitos dos fármacos , Rim/efeitos dos fármacos , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Apoptose , Cisplatino/efeitos adversos , DNA/metabolismo , DNA Mitocondrial/metabolismo , Marcação In Situ das Extremidades Cortadas , Peroxidação de Lipídeos , Masculino , Ratos , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA