Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Biosens Bioelectron ; 249: 115985, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219465

RESUMO

Multidrug resistance (MDR) remains a significant challenge in cancer therapy, with inherent and acquired resistance distinct. While conventional drug selection processes enable the isolation of cancer cells with acquired multidrug resistance, identifying cancer cells with inherent drug resistance remains challenging. Herein, we proposed a molecular beacon (MB)-based strategy to identify and isolate the inherent MDR cancer cells. A lipid/PLGA core-shell nanoparticulate system (DNCP) was designed to deliver MB for intracellular MDR1 mRNA imaging. DNCP-MB - possess a surface potential of -8 mV and a size of 150 nm - demonstrated effective delivery of MB, remarkable selectivity towards the selected intracellular mRNA targets, and low cytotoxicity. Following DNCP transfection, fluorescence-activated cell sorting (FACS) was employed to differentiate MCF-7 cells into two distinct sub-populations: the Top 10 cells with a high level of MDR gene expression and the Bottom 10 cells with a low level of MDR gene expression, which represent inherent drug-resistant and non-drug-resistant cells, respectively. Intriguingly, we observed a positive correlation between elevated MDR1 mRNA expression and increased migration, enhanced proliferation rate, and tighter spheroid formation. Moreover, we conducted RNA sequencing analysis on the Top 10, Bottom 10, and MCF-7/ADR cells. The findings revealed a notable disparity in the gene ontology enrichment analysis of differentially expressed genes between the Top 10 and Bottom 10 cells when compared to the Bottom 10 and MCF-7/ADR cells. This novel approach provides a promising avenue for isolating inherent drug-resistant cells and holds significant potential in unraveling the mechanisms underlying inherent drug resistance.


Assuntos
Técnicas Biossensoriais , Neoplasias , Humanos , Doxorrubicina , Resistencia a Medicamentos Antineoplásicos/genética , Resistência a Múltiplos Medicamentos/genética , Células MCF-7 , RNA Mensageiro , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/genética
2.
J Control Release ; 360: 260-273, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37364798

RESUMO

T lymphocytes served as immune surveillance to suppress metastases by physically interacting with cancer cells. Whereas tumor immune privilege and heterogeneity protect immune attack, it limits immune cell infiltration into tumors, especially in invasive metastatic clusters. Here, a catalytic antigen-capture sponge (CAS) containing the catechol-functionalized copper-based metal organic framework (MOF) and chloroquine (CQ) for programming T cells infiltration is reported. The intravenously injected CAS accumulates at the tumor via the folic acid-mediated target and margination effect. In metastases, Fenton-like reaction induced by copper ions of CAS disrupts the intracellular redox potential, i.e., chemodynamic therapy (CDT), thereby reducing glutathione (GSH) levels. Furthermore, CQ helps inhibit autophagy by inducing lysosomal deacidification during CDT. This process leads to the breakdown of self-defense mechanisms, which exacerbates cytotoxicity. The therapies promote the liberation of tumor-associated antigens, such as neoantigens and damage-associated molecular patterns (DAMPs). Subsequently, the catechol groups present on CAS perform as antigen reservoirs and transport the autologous tumor-associated antigens to dendritic cells, resulting in prolonged immune activation. The CAS, which is capable of forming in-situ, serves as an antigen reservoir in CDT-mediated lung metastasis and leads to the accumulation of immune cells in metastatic clusters, thus hindering metastatic tumors.


Assuntos
Neoplasias Pulmonares , Neoplasias , Humanos , Linfócitos T , Cobre , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Imunoterapia/métodos , Antígenos de Neoplasias , Células Dendríticas , Linhagem Celular Tumoral
3.
J Control Release ; 358: 718-728, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37230295

RESUMO

Adoptive T cells and immunotherapy suppress the most destructive metastatic tumors and prevent tumor recurrence by inducing T lymphocytes. However, the heterogeneity and immune privilege of invasive metastatic clusters often reduce immune cell infiltration and therapeutic efficacy. Here, the red blood cells (RBC)-hitchhiking mediated lung metastasis delivery of multi-grained iron oxide nanostructures (MIO) programming the antigen capture, dendritic cell harnessing, and T cell recruitment is developed. MIO is assembled to the surface of RBCs by osmotic shock-mediated fusion, and reversible interactions enable the transfer of MIO to pulmonary capillary endothelial cells by intravenous injection by squeezing RBCs at the pulmonary microvessels. RBC-hitchhiking delivery revealed that >65% of MIOs co-localized in tumors rather than normal tissues. In alternating magnetic field (AMF)-mediated magnetic lysis, MIO leads to the release of tumor-associated antigens, namely neoantigens and damage-associated molecular patterns. It also acted as an antigen capture agent-harnessed dendritic cells delivers these antigens to lymph nodes. By utilizing site-specific targeting, erythrocyte hitchhiker-mediated delivery of MIO to lung metastases improves survival and immune responses in mice with metastatic lung tumors.


Assuntos
Células Endoteliais , Neoplasias Pulmonares , Animais , Camundongos , Neoplasias Pulmonares/patologia , Antígenos de Neoplasias , Pulmão/patologia , Células Dendríticas
4.
Mater Sci Eng C Mater Biol Appl ; 126: 112189, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34082988

RESUMO

The incorporation of specific therapeutic gene into glioblastoma offers potent therapeutic strategy to treat the disease. Non-viral gene delivery vectors are of particular interest due to their tuneable transfection efficiency and easy scale-up. Herein, we demonstrate successful delivery of plasmid encoding tumor necrosis factor (TNF)-related apoptosis-inducing ligand (pTRAIL) using arginine-conjugated tocopherol lipid (AT) nanovesicles into glioblastoma cell lines. Another cationic lipid, glycine-conjugated tocopherol lipid (GT) having glycine in the head group region is also synthesized as a control lipid. Both lipid-derived liposomes effectively condensed the pDNA and the corresponding biomacromolecular assemblies (lipoplexes) are efficiently transfected into different cell lines. AT-based liposomes exhibit higher transfection efficacy in various cell lines, particularly selective in glioma cell lines. At an optimized N/P ratio, both the liposomal formulations show low cytotoxicity. AT-based lipoplexes have superior cellular uptake in U87 than the control lipid GT. The expression of TRAIL protein regulated death receptor and apoptosis signaling pathway is assayed by western blot using transfection of AT-based/pTRAIL into U87 cell lines. Induction of apoptosis in U87 cells exposed to AT-based/pTRAIL plasmid is evaluated by MTT assay as well as Annexin V-propidium iodide dual-staining assay. All results indicate that the developed AT-based/pTRAIL system offers a potentially safe and efficient therapeutic strategy for glioblastoma gene therapy.


Assuntos
Glioblastoma , Apoptose , Arginina , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Humanos , Lipídeos , Lipossomos , Plasmídeos/genética , Tocoferóis , Transfecção
5.
J Mater Chem B ; 9(21): 4267-4286, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33942822

RESUMO

Gene delivery is an indispensable technique for various biomedical applications such as gene therapy, stem cell engineering and gene editing. Recently, magnetic nanoparticles (MNPs) have received increasing attention for their use in promoting gene delivery efficiency. Under magnetic attraction, gene delivery efficiency using viral or nonviral gene carriers could be universally enhanced. Besides, magnetic nanoparticles could be utilized in magnetic resonance imaging or magnetic hyperthermia therapy, providing extra theranostic opportunities. In this review, recent research integrating MNPs with a viral or nonviral gene vector is summarized from both technical and application perspectives. Applications of MNPs in cutting-edge research technologies, such as biomimetic cell membrane nano-gene carriers, exosome-based gene delivery, cell-based drug delivery systems or CRISPR/Cas9 gene editing, are also discussed.


Assuntos
Técnicas de Transferência de Genes , Magnetismo , Nanoestruturas , Sistemas CRISPR-Cas , Edição de Genes/métodos , Vetores Genéticos , Humanos , Neoplasias/terapia , Medicina Regenerativa , Vírus/genética
6.
ACS Appl Mater Interfaces ; 12(27): 30021-30030, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32594734

RESUMO

Combining photothermal and photodynamic modalities has shown encouraging therapeutic efficacy against various malignant cancers. Developing a delivery method for targeting and penetrating tumors is still a major focus for advancing this therapeutic approach. Herein, we report a novel strategy involving the utilization of stem cells as a live carrier to codeliver photothermal and photodynamic agents for cancer therapy. To this end, a novel gold nanorod (AuNR)-PEG-PEI (APP)/chlorin e6 (Ce6)-loaded adipose-derived stem cell (ADSC) system is proposed in which AuNRs and Ce6 act as the photothermal and photodynamic agents, respectively. To integrate with stem cells, the APP/Ce6 nanocomplexes exhibit advantages of low drug leakage, low cytotoxicity, efficient cellular uptake, and redox-responsive release. After loading of APP/Ce6 nanocomplexes, the ADSCs still maintained good tumor tropism and were capable of penetrating into the tumor spheroids. The photothermal effect induced by exposure to near-infrared light irradiation at 808 nm promoted the release of Ce6 from the stem cells into the surroundings and hence increased its availability to treat cancer cells. APP/Ce6-loaded ADSCs exerted effective dose-dependent in vitro anticancer activities via anticipated photothermal and photodynamic effects. In a murine CT26 colon cancer model, APP/Ce6 delivered by ADSCs resulted in superior tumor suppression compared to other delivery strategies. It was also noted that in vivo applications of APP/Ce6-loaded ADSCs did not induce noticeable detrimental effects on normal tissues/organs.


Assuntos
Ouro/química , Fotoquimioterapia/métodos , Porfirinas/química , Células-Tronco/citologia , Células-Tronco/metabolismo , Tecido Adiposo/citologia , Animais , Linhagem Celular Tumoral , Clorofilídeos , Camundongos
7.
Brain Stimul ; 13(3): 786-799, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32289709

RESUMO

BACKGROUND: Non-virus genetic treatment for Parkinson's disease (PD) via plasmid glial cell-line derived neurotrophic factor (pGDNF) has shown potential for repairing damaged dopaminergic neurons. However, development of this gene therapy is largely hampered by the insufficient transfection efficiency as a result of the cell membrane, lysosome, and cytoskeleton meshwork. METHODS: In this study, we propose the use of polyethylenimine (PEI)-superparamagnetic iron oxide-plasmid DNA (pDNA)-loaded microbubbles (PSp-MBs) in conjunction with focused ultrasound (FUS) and two-step magnetic navigation to provide cavitation, proton sponge effect and magnetic effects to increase the efficiency of gene delivery. RESULTS: The gene transfection rate in the proposed system was 2.2-fold higher than that of the commercial agent (TransIT®-LT1). The transfection rate could be boosted ∼11%, ∼10%, and 6% by cavitation-magnetic hybrid enhanced cell membrane permeabilization, proton sponge effect, and magnetic-assisted cytoskeleton-reorganization, respectively. In vivo data suggested that effective gene delivery with this system results in a 3.2-fold increase in recovery of dopaminergic neurons and a 3.9-fold improvement in the motor behavior when compared to untreated genetic PD mice. CONCLUSIONS: We proposed that this novel FUS-magnetic hybrid gene delivery platform could be integrated with a variety of therapeutic genes for treating neurodegenerative diseases in the future.


Assuntos
Líquido Extracelular , Terapia Genética/métodos , Vetores Genéticos/genética , Líquido Intracelular , Campos Magnéticos , Doença de Parkinson/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Neurônios Dopaminérgicos/metabolismo , Líquido Extracelular/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Humanos , Líquido Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia
8.
Theranostics ; 9(8): 2411-2423, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31149052

RESUMO

Cancer toxic agent-expressing mesenchymal stem cells (MSCs), which possess inherent tumor migration and penetration capabilities, have received increasing attention in cancer therapy. To ensure that this approach is successful, safe and efficient gene delivery methods for stem cell engineering must be developed. Methods: In this study, a magnetic ternary nanohybrid (MTN) system comprising biodegradable cationic materials, nucleic acids, and hyaluronic acid-decorated superparamagnetic iron oxide nanoparticles was proposed to construct stem cells expressing the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) via magnetic force and receptor dual targeting. Results: The CD44/magnetic force-mediated enhanced cellular uptake of MTNs by human mesenchymal cells (hMSCs) was confirmed in vitro. Highly efficient transfection was attained using MTNs without having any detrimental effect on the tumor migration and penetration capabilities of hMSCs. TRAIL expressed by the MTN-transfected hMSCs displayed strong anticancer effects through the activation of caspase-3 apoptotic signaling. The MTN-transfected hMSCs can be clearly imaged using magnetic resonance imaging techniques in vivo. In an orthotopic xenograft cancer model, MTN-transfected TRAIL-expressing hMSCs significantly suppressed the progression of human glioma (U87MG) and prolonged the survival of the animal. Conclusions: These findings suggest the considerable potential of utilizing MTNs for effectively constructing tumor toxic agent-expressing stem cells for treating malignant cancers.


Assuntos
Portadores de Fármacos/metabolismo , Técnicas de Transferência de Genes , Glioma/terapia , Magnetismo , Células-Tronco Mesenquimais/metabolismo , Nanopartículas Metálicas/química , Nanocompostos/química , Animais , Engenharia Celular/métodos , Linhagem Celular Tumoral , Terapia Baseada em Transplante de Células e Tecidos/métodos , Modelos Animais de Doenças , Portadores de Fármacos/síntese química , Compostos Férricos/química , Compostos Férricos/metabolismo , Glioma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular/métodos , Transplante de Neoplasias , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transfecção , Transplante Heterólogo , Resultado do Tratamento
9.
Int J Nanomedicine ; 14: 181-193, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30613145

RESUMO

PURPOSE: A biocompatible nanocomplex system co-encapsulated with gold nanorods (AuNRs) and doxorubicin (DOX) was investigated for its potentials on the combined photothermal- and chemotherapy. MATERIALS AND METHODS: Hydrophobic AuNRs were synthesized by the hexadecyltrimethyl-ammonium bromide (CTAB)-mediated seed growth method, and then, they received two-step surface modifications of polyethylene glycol (PEG) and dodecane. The AuNR/DOX/poly(lactic-co-glycolic acid) (PLGA) nanocomplexes were prepared by emulsifying DOX, AuNR, and PLGA into aqueous polyvinyl alcohol solution by sonication. Human serum albumin (HSA) was used to coat the nanocomplexes to afford HSA/AuNR/DOX-PLGA (HADP). Size and surface potential of the HADP nanocomplexes were determined by using a Zetasizer. Cytotoxicity and cellular uptake of the HADP were analyzed by using MTT assay and flow cytometry, respectively. In vitro anticancer effects of the HADP were studied on various cancer cell lines. To assess the therapeutic efficacy, CT26 tumor-bearing mice were intravenously administered with HADP nanocomplexes and laser treatments, followed by monitoring of the tumor growth and body weight. RESULTS: Size and surface potential of the HADP nanocomplexes were 245.8 nm and -8.6 mV, respectively. Strong photothermal effects were verified on the AuNR-loaded PLGA nanoparticles (NPs) in vitro. Rapid and repeated drug release from the HADP nanocomplexes was successfully achieved by near-infrared (NIR) irradiations. HSA significantly promoted cellular uptake of the HADP nanocomplexes to murine colon cancer cells as demonstrated by cell imaging and flow cytometric studies. By combining photothermal and chemotherapy, the HADP nanocomplexes exhibited strong synergistic anticancer effects in vitro and in vivo. CONCLUSION: An NIR-triggered drug release system by encapsulating hydrophobic AuNR and DOX inside the PLGA NPs has been successfully prepared in this study. The HADP NPs show promising combined photothermal- and chemotherapeutic effects without inducing undesired side effects on a murine colon cancer animal model.


Assuntos
Materiais Biocompatíveis/química , Doxorrubicina/uso terapêutico , Ouro/química , Hipertermia Induzida , Nanotubos/química , Neoplasias/terapia , Fototerapia , Polímeros/química , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Doxorrubicina/química , Liberação Controlada de Fármacos , Endocitose , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Nanotubos/ultraestrutura , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Albumina Sérica/química , Eletricidade Estática
10.
Anticancer Res ; 38(8): 4651-4659, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30061232

RESUMO

BACKGROUND/AIM: An injectable chitosan-based co-cross-linking thermosensitive hydrogel combining 188Re- and doxorubicin-encapsulated liposomes (C/GP/GE/188Re-LIPO-DOX) was developed for the prevention of locoregional recurrence after mastectomy. MATERIALS AND METHODS: The hydrogel properties, in vitro drug release characteristics, and in vivo scintigraphy imaging attributes were investigated. RESULTS: The gelation time of the hydrogels can be controlled to be within 5 min. Results from Fourier-transform infrared spectroscopy, scanning electron microscopy, and dynamic mechanical analysis showed that a covalent cross-linking reaction between chitosan and genipin occurred and that the hydrogel's mechanical strength and chemical stability were improved. In vitro drug release studies showed that the hydrogel can prolong the release of doxorubicin by several weeks (51.5%±5.3% at 21 days). In addition, in vivo scintigraphy results suggested high retention rates (43.1%±1.0% at 48 h) of the radiopharmaceutical compound at the tumor injection site. CONCLUSION: The preliminary results indicated that the C/GP/GE/188Re-LIPO-DOX radiopharmaceutical hydrogel is a potential candidate for further in vivo therapeutic evaluation.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Quitosana/química , Doxorrubicina/análogos & derivados , Hidrogéis/química , Radioisótopos/química , Rênio/química , Animais , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Feminino , Humanos , Injeções/métodos , Iridoides/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Recidiva Local de Neoplasia/tratamento farmacológico , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Compostos Radiofarmacêuticos/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
11.
J Pathol ; 245(4): 502-513, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29862509

RESUMO

Hepatitis B virus (HBV) is an aetiological factor for liver cirrhosis and hepatocellular carcinoma (HCC). Despite current antiviral therapies that successfully reduce the viral load in patients with chronic hepatitis B, persistent hepatitis B surface antigen (HBsAg) remains a risk factor for HCC. To explore whether intrahepatic viral antigens contribute directly to hepatocarcinogenesis, we monitored the mitotic progression of HBV-positive cells. Cytokinesis failure was increased in HBV-positive HepG2.2.15 and 1.3ES2 cells, as well as in HuH-7 cells transfected with a wild-type or X-deficient HBV construct, but not in cells transfected with an HBsAg-deficient construct. We show that expression of viral large surface antigen (LHBS) was sufficient to induce cytokinesis failure of immortalized hepatocytes. Premitotic defects with DNA damage and G2 /M checkpoint attenuation preceded cytokinesis in LHBS-positive cells, and ultimately resulted in hyperploidy. Inhibition of polo-like kinase-1 (Plk1) not only restored the G2 /M checkpoint in these cells, but also suppressed LHBS-mediated in vivo tumourigenesis. Finally, a positive correlation between intrahepatic LHBS expression and hepatocyte hyperploidy was detected in >70% of patients with chronic hepatitis B. We conclude that HBV LHBS provokes hyperploidy by inducing DNA damage and upregulation of Plk1; the former results in atypical chromatin structures, and the latter attenuates the function of the G2 /M DNA damage checkpoint. Our data uncover a mechanism by which genomic integrity of hepatocytes is disrupted by viral LHBS. These findings highlight the role of intrahepatic surface antigen as an oncogenic risk factor in the development of HCC. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Carcinoma Hepatocelular/virologia , Citocinese , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/metabolismo , Hepatite B Crônica/virologia , Hepatócitos/virologia , Neoplasias Hepáticas/virologia , Ploidias , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/metabolismo , Transformação Celular Viral , Dano ao DNA , Modelos Animais de Doenças , Pontos de Checagem da Fase G2 do Ciclo Celular , Células Hep G2 , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B da Marmota/genética , Vírus da Hepatite B da Marmota/metabolismo , Vírus da Hepatite B/genética , Hepatite B Crônica/genética , Hepatite B Crônica/metabolismo , Hepatite B Crônica/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatócitos/transplante , Interações Hospedeiro-Patógeno , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Marmota , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Quinase 1 Polo-Like
12.
Nanotheranostics ; 2(2): 106-116, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29577015

RESUMO

A multifunctional albumin/superparamagnetic iron oxide nanoparticle (SPIO) nanocomplex system to deliver IR780, a photothermal agent, for cancer theranostic applications was proposed in this study. Single emulsion method was utilized to fabricate the human albumin/IR780/SPIO (HISP) nanocomplexes with a hydrophobic core (SPIO and IR780) and a hydrophilic shell (human serum albumin (HSA) and poly (ethylene glycol) (PEG)). Effects of PEGylation on the size and surface potential of nanocomplexes were analyzed. Nanospheres containing uniformly dispersed SPIO was observed using Transmission Electron Microscopy (TEM) imaging. As a potential magnetic resonance (MR) imaging agent, the HISP displayed dose-dependent T2-weighted imaging contrast (R2 = 81.6 mM-1s-1). Good colloidal stability was verified from the nanocomplexes under difference circumstances. The nanocomplexes were taken up by cancer cells efficiently and led to significant photothermal-mediated cancer cell death upon short-term near infrared (NIR) irradiation in vitro. Via intravenous injection, PEG-HISP can efficiently deliver IR780 to tumor sites and showed strong photothermal effect compared to free drug on the mice model. Significant tumor suppression by the photothermal treatments using PEG-HISP was demonstrated from the mice CT26 xenograft model. Good safety profile of the PEG-HISP was confirmed from histological examination and liver functional analysis. Taken together, the results suggest that PEG-HISP is a safe and robust nano-theranostic platform for advanced anti-cancer treatment.

13.
J Control Release ; 254: 119-130, 2017 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-28336375

RESUMO

Chemotherapy is typically used to treat malignant brain tumors, especially for the tumors in surgically inaccessible areas. However, owing to the existence of blood-brain barrier (BBB), the tumor accumulation and therapeutic efficacy of clinical therapeutics is still of great concerns. To this end, we present herein a prominent therapeutic strategy adopting adipose-derived stem cells (ADSCs) capable of carrying nanotherapeutic payloads selectively toward brain tumors for thermo/chemotherapy. The nanoparticle (NP) payload was obtained from co-assembly of poly(γ-glutamic acid-co-distearyl γ-glutamate) with poly(lactic-co-glycolic acid), paclitaxel (PTX), and oleic acid-coated superparamagnetic iron oxide NPs in aqueous solution. The particle size and drug loading content were ca 110nm and 8.4wt%, respectively. After being engulfed by ADSCs, the nanotherapeutics was found rather harmless to cellular hosts at a PTX concentration of 30µM over 48h in the absence of pertinent stimulus. Nevertheless, the ADSC-based approach combined with high frequency magnetic field exhibits a sound therapeutic performance with a 4-fold increase in therapeutic index on brain astrocytoma (ALTS1C1)-bearing mice (C57BL/6J) as compared to the typical chemotherapy using a current first-line chemodrug, temozolomide. Immunohistochemical examination of brain tumor sections confirms the successful cellular transport and pronounced cytotoxic action of therapeutics against tumor cells in vivo. This work demonstrates the promise of ADSC-mediated chemo/thermal therapy against brain tumors.


Assuntos
Adipócitos/citologia , Neoplasias Encefálicas/tratamento farmacológico , Portadores de Fármacos , Glioblastoma/tratamento farmacológico , Nanopartículas de Magnetita/química , Células-Tronco , Adipócitos/fisiologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Dacarbazina/análogos & derivados , Dacarbazina/química , Dacarbazina/farmacologia , Liberação Controlada de Fármacos , Humanos , Ácido Láctico/química , Masculino , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Ácido Oleico/química , Paclitaxel/administração & dosagem , Paclitaxel/química , Tamanho da Partícula , Permeabilidade , Ácido Poliglutâmico/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Propriedades de Superfície , Temozolomida , Distribuição Tecidual
14.
ACS Appl Mater Interfaces ; 9(4): 3873-3884, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28071899

RESUMO

This paper describes the synthesis of near-infrared (NIR)-absorbing gold nanoframes (GNFs) and a systematic study comparing their physiological stability and biocompatibility with those of hollow Au-Ag nanoshells (GNSs), which have been used widely as photothermal agents in biomedical applications because of their localized surface plasmon resonance (LSPR) in the NIR region. The GNFs were synthesized in three steps: galvanic replacement, Au deposition, and Ag dealloying, using silver nanospheres (SNP) as the starting material. The morphology and optical properties of the GNFs were dependent on the thickness of the Au coating layer and the degree of Ag dealloying. The optimal GNF exhibited a robust spherical skeleton composed of a few thick rims, but preserved the distinctive LSPR absorbance in the NIR region-even when the Ag content within the skeleton was only 10 wt %, 4-fold lower than that of the GNSs. These GNFs displayed an attractive photothermal conversion ability and great photothermal stability, and could efficiently kill 4T1 cancer cells through light-induced heating. Moreover, the GNFs preserved their morphology and optical properties after incubation in biological media (e.g., saline, serum), whereas the GNSs were unstable under the same conditions because of rapid dissolution of the considerable silver content with the shell. Furthermore, the GNFs had good biocompatibility with normal cells (e.g., NIH-3T3 and hepatocytes; cell viability for both cells: >90%), whereas the GNSs exhibited significant dose-dependent cytotoxicity (e.g., cell viability for hepatocytes at 1.14 nM: ca. 11%), accompanied by the induction of reactive oxygen species. Finally, the GNFs displayed good biocompatibility and biosafety in an in vivo mouse model; in contrast, the accumulation of GNSs caused liver injury and inflammation. Our results suggest that GNFs have great potential to serve as stable, biocompatible NIR-light absorbers for in vivo applications, including cancer detection and combination therapy.


Assuntos
Nanoconchas , Animais , Sobrevivência Celular , Ouro , Camundongos , Prata , Ressonância de Plasmônio de Superfície
16.
Oncotarget ; 7(13): 17144-61, 2016 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-26958809

RESUMO

The oral cancer cell line OC3-I5 with a highly invasive ability was selected and derived from an established OSCC line OC3. In this study, we demonstrated that matrix metalloproteinases protein MMP-13 was up-regulated in OC3-I5 than in OC3 cells. We also observed that expression of epithelial-mesenchymal transition (EMT) markers including Twist, p-Src, Snail1, SIP1, JAM-A, and vinculin were increased in OC3-I5 compared to OC3 cells, whereas E-cadherin expression was decreased in the OC3-I5 cells. Using siMMP-13 knockdown techniques, we showed that siMMP-13 not only reduced the invasion and migration, but also the adhesion abilities of oral cancer cells. In support of the role of MMP-13 in metastasis, we used MMP-13 expressing plasmid-transfected 293T cells to enhance MMP-13 expression in the OC3 cells, transplanting the MMP-13 over expressing OC3 cells into nude mice led to enhanced lung metastasis. In summary, our findings show that MMP-13 promotes invasion and metastasis in oral cancer cells, suggesting altered expression of MMP-13 may be utilized to impede the process of metastasis.

17.
Oncotarget ; 7(17): 23346-60, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-26992221

RESUMO

Hepatitis B virus (HBV) is a driver of hepatocellular carcinoma, and two viral products, X and large surface antigen (LHBS), are viral oncoproteins. During chronic viral infection, immune-escape mutants on the preS2 region of LHBS (preS2-LHBS) are gain-of-function mutations that are linked to preneoplastic ground glass hepatocytes (GGHs) and early disease onset of hepatocellular carcinoma. Here, we show that preS2-LHBS provoked calcium release from the endoplasmic reticulum (ER) and triggered stored-operated calcium entry (SOCE). The activation of SOCE increased ER and plasma membrane (PM) connections, which was linked by ER- resident stromal interaction molecule-1 (STIM1) protein and PM-resident calcium release- activated calcium modulator 1 (Orai1). Persistent activation of SOCE induced centrosome overduplication, aberrant multipolar division, chromosome aneuploidy, anchorage-independent growth, and xenograft tumorigenesis in hepatocytes expressing preS2- LHBS. Chemical inhibitions of SOCE machinery and silencing of STIM1 significantly reduced centrosome numbers, multipolar division, and xenograft tumorigenesis induced by preS2-LHBS. These results provide the first mechanistic link between calcium homeostasis and chromosome instability in hepatocytes carrying preS2-LHBS. Therefore, persistent activation of SOCE represents a novel pathological mechanism in HBV-mediated hepatocarcinogenesis.


Assuntos
Canais de Cálcio/metabolismo , Carcinoma Hepatocelular/genética , Instabilidade Cromossômica , Antígenos de Superfície da Hepatite B/metabolismo , Hepatite B/complicações , Neoplasias Hepáticas/genética , Mutação , Precursores de Proteínas/metabolismo , Animais , Cálcio/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virologia , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Hepatite B/genética , Hepatite B/virologia , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/patogenicidade , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Precursores de Proteínas/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Biomaterials ; 90: 12-26, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26974704

RESUMO

Ovarian cancers are the leading cause for mortality among gynecologic malignancies with five-year survival rate less than 30%. The purpose of this study is to develop a redox and pH-sensitive self-assembling hyaluronic acid nanoparticle with active targeting peptide for anticancer drug delivery. Anti-cancer drug is grafted onto hyaluronic acid (HA) via cis-aconityl linkage and disulfide bond to possess pH sensitivity and redox property, respectively. This conjugate is amphiphilic and can self-assemble into nanoparticle (NP) in aqueous solution. The results show that the nanoconjugate is successfully developed and the grafting ratio of cystamine (cys) is 17.8% with drug loading amount about 6.2% calculated by (1)H NMR spectra. The particle size is approximately 229.0 nm using dynamic light scatting measurement, and the morphology of nanoparticles is observed as spherical shape by transmission electron microscope. The pH and redox sensitivities are evaluated by changing either pH value or concentration of dithiothreitol in the medium. It is proved that the drug carrier is capable of achieving sustained controlled release of anti-cancer drug to 95% within 150 h. The intracellular uptake is observed by fluorescent microscope and the images show that conjugating luteinizing hormone-releasing hormone (LHRH) peptide can enhance specific uptake of nanoparticles by OVCAR-3 cancer cells; thus, resulting in inhibitory cell growth to less than 20% in 72 h in vitro. Orthotopic ovarian tumor model is also established to evaluate the therapeutic and diagnostic efficacy using non-invasive in vivo imaging system. The representative results demonstrate that LHRH-conjugated NPs possess a preferable tumor imaging capability and an excellent antitumor ability to almost 30% of original size in 20 days.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Preparações de Ação Retardada/química , Doxorrubicina/administração & dosagem , Ácido Hialurônico/química , Nanoconjugados/química , Neoplasias Ovarianas/tratamento farmacológico , Ovário/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cistamina/química , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Neoplasias Ovarianas/diagnóstico , Ovário/patologia , Oxirredução , Peptídeos/química , Nanomedicina Teranóstica
19.
Sci Rep ; 6: 21170, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26880047

RESUMO

Theranostics, an integrated therapeutic and diagnostic system, can simultaneously monitor the real-time response of therapy. Different imaging modalities can combine with a variety of therapeutic moieties in theranostic nanoagents. In this study, a multi-functionalized, integrated theranostic nanoagent based on folate-conjugated reducible polyethylenimine passivated carbon dots (fc-rPEI-Cdots) is developed and characterized. These nanoagents emit visible blue photoluminescence under 360 nm excitation and can encapsulate multiple siRNAs (EGFR and cyclin B1) followed by releasing them in intracellular reductive environment. In vitro cell culture study demonstrates that fc-rPEI-Cdots is a highly biocompatible material and a good siRNA gene delivery carrier for targeted lung cancer treatment. Moreover, fc-rPEI-Cdots/pooled siRNAs can be selectively accumulated in lung cancer cells through receptor mediated endocytosis, resulting in better gene silencing and anti-cancer effect. Combining bioimaging of carbon dots, stimulus responsive property, gene silencing strategy, and active targeting motif, this multi-functionalized, integrated theranostic nanoagent may provide a useful tool and platform to benefit clinicians adjusting therapeutic strategy and administered drug dosage in real time response by monitoring the effect and tracking the development of carcinomatous tissues in diagnostic and therapeutic aspects.


Assuntos
Carbono , Técnicas de Transferência de Genes , Neoplasias Pulmonares/genética , Nanopartículas , Nanomedicina Teranóstica , Transgenes , Animais , Materiais Biocompatíveis , Carbono/química , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ácido Fólico/química , Expressão Gênica , Inativação Gênica , Genes Reporter , Humanos , Iminas/química , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Masculino , Teste de Materiais , Camundongos , Imagem Molecular , Nanopartículas/química , Nanopartículas/ultraestrutura , Oxirredução , Tamanho da Partícula , Polietilenos/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética
20.
J Control Release ; 220(Pt B): 738-50, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26374945

RESUMO

Photodynamic therapy (PDT) is a powerful technique photochemically tailored for activating apoptosis of malignant cells. Although PDT has shown promise in several clinical applications, malignant cells in hypoxic regions are often resistant to PDT due to the transport limitation of therapeutics and the oxygen-dependent nature of PDT. Herein, we present an innovative strategy for overcoming the limits of PDT in tumor hypoxia using bone marrow-derived monocytes as cellular vehicles for co-transport of oxygen and red light activatable photosensitizer, chlorin e6 (Ce6). Superparamagnetic iron oxide nanoparticle/Ce6/oxygen-loaded polymer bubbles were prepared and internalized into tumortropic monocytes. These functional bubbles were found harmless to cellular hosts without external triggers. Nevertheless, the therapeutic monocytes exhibited a superior performance in inhibiting tumor growth on Tramp-C1 tumor-bearing mice (C57BL/6J) upon the treatments of tumors with high frequency magnetic field and red light laser (660 nm). Histological examinations of the tumor sections confirmed the successful cellular transport of therapeutic payloads to tumor hypoxia and the pronounced antitumor effect elicited by combined hyperthermia/photodynamic therapy along with the additional oxygen supply. This work demonstrates that this oxygen/therapeutic co-delivery via tumortropic monocytes toward tumor hypoxia is promising for improving PDT efficacy.


Assuntos
Técnicas de Ablação , Transplante de Medula Óssea/métodos , Hipertermia Induzida , Microbolhas , Monócitos/transplante , Oxigênio/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Porfirinas/administração & dosagem , Neoplasias da Próstata/terapia , Microambiente Tumoral , Animais , Apoptose , Hipóxia Celular , Linhagem Celular Tumoral , Clorofilídeos , Lasers , Nanopartículas de Magnetita/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Fotoquimioterapia/instrumentação , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Células RAW 264.7 , Fatores de Tempo , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA