Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 12(4)2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35454154

RESUMO

Sarcopenia is characterized as an age-related loss of muscle mass that results in negative health consequences such as decreased strength, insulin resistance, slowed metabolism, increased body fat mass, and a substantially diminished quality of life. Additionally, conditions such as high blood sugar are known to further exacerbate muscle degeneration. Skeletal muscle development and regeneration following injury or disease are based on myoblast differentiation. Bioactive peptides are biologically active peptides found in foods that could have pharmacological functions. The aim of this paper was to investigate the effect of decapeptide DI-10 from the potato alcalase hydrolysate on myoblast differentiation, muscle protein synthesis, and mitochondrial biogenesis in vitro. The treatment of C2C12 myoblasts with DI-10 (10 µg/mL) did not induce cell death. DI-10 treatment in C2C12 myoblast cells accelerates the phosphorylation of promyogenic kinases such as ERK, Akt and mTOR proteins in a dose-dependent manner. DI-10 improves myotubes differentiation and upregulates the expression of myosin heavy chain (MyHC) protein in myoblast cells under differentiation medium with high glucose. DI-10 effectively increased the phosphorylation of promyogenic kinases Akt, mTOR, and mitochondrial-related transcription factors AMPK and PGC1α expression under hyperglycemic conditions. Further, decapeptide DI-10 decreased the expression of Murf1 and MAFbx proteins, which are involved in protein degradation and muscle atrophy. Our reports support that decapeptide DI-10 could be potentially used as a therapeutic candidate for preventing muscle degeneration in sarcopenia.


Assuntos
Sarcopenia , Solanum tuberosum , Diferenciação Celular , Glucose/metabolismo , Glucose/farmacologia , Humanos , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Biogênese de Organelas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Qualidade de Vida , Solanum tuberosum/metabolismo , Serina-Treonina Quinases TOR/metabolismo
2.
Molecules ; 26(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34770984

RESUMO

Sarcopenia is an aging associated disorder involving skeletal muscle atrophy and a reduction in muscle strength, and there are no pharmaceutical interventions available thus far. Moreover, conditions such as hyperglycaemia are known to further intensify muscle degradation. Therefore, novel strategies to attenuate skeletal muscle loss are essential to enhance muscle function and thereby improve the quality of life in diabetic individuals. In this study, we have investigated the efficiency of a potato peptide hydrolysate PPH902 for its cytoprotective effects in skeletal muscle cells. PPH902 treatment in C2C12 cells showed the dose-dependent activation of the Akt/mTOR signalling pathway that is involved in skeletal myogenesis. According to Western blotting analysis, PPH902 induced the phosphorylation of Akt, mTOR proteins and induced the myogenic differentiation of C2C12 myoblasts in a differentiation medium. The phosphorylation myogenic transcription factor Foxo3A was also found to be increased in the cells treated with PPH902. In addition, treatment with PPH902 ameliorated the high glucose induced reduction in cell viability in a dose-dependent manner. Moreover, the number of myotubes in a differentiation medium reduced upon high glucose challenge, but treatment with PPH902 increased the number of differentiated myotubes. Further, the phosphorylations of AMPK and mitochondrial-related transcription factors such as PGC-1α were suppressed upon high glucose challenge but PPH902 treatment restored the protein levels. We demonstrate, for the first time, that a specific potato peptide has a therapeutic effect against sarcopenia. In addition, PPH902 improved the myogenic differentiation and their mitochondrial biogenesis and further improved myogenic protein and inhibited muscle protein degradation in C2C12 cells challenged under a high glucose condition.


Assuntos
Proteína Forkhead Box O3/biossíntese , Glucose/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Proteína Forkhead Box O3/química , Camundongos , Desenvolvimento Muscular/efeitos dos fármacos , Hidrolisados de Proteína
3.
PLoS One ; 12(3): e0174206, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28346501

RESUMO

Primary cilia are nearly ubiquitous, cellular projections that function to transduce molecular signals during development. Loss of functional primary cilia has a particularly profound effect on the developing craniofacial complex, causing several anomalies including craniosynostosis, micrognathia, midfacial dysplasia, cleft lip/palate and oral/dental defects. Development of the craniofacial complex is an intricate process that requires interactions between several different tissues including neural crest cells, neuroectoderm and surface ectoderm. To understand the tissue-specific requirements for primary cilia during craniofacial development we conditionally deleted three separate intraflagellar transport genes, Kif3a, Ift88 and Ttc21b with three distinct drivers, Wnt1-Cre, Crect and AP2-Cre which drive recombination in neural crest, surface ectoderm alone, and neural crest, surface ectoderm and neuroectoderm, respectively. We found that tissue-specific conditional loss of ciliary genes with different functions produces profoundly different facial phenotypes. Furthermore, analysis of basic cellular behaviors in these mutants suggests that loss of primary cilia in a distinct tissue has unique effects on development of adjacent tissues. Together, these data suggest specific spatiotemporal roles for intraflagellar transport genes and the primary cilium during craniofacial development.


Assuntos
Anormalidades Craniofaciais/genética , Face/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Crânio/embriologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Cílios/genética , Face/anormalidades , Feminino , Deleção de Genes , Cinesinas/genética , Masculino , Camundongos , Crista Neural/embriologia , Crista Neural/metabolismo , Placa Neural/embriologia , Placa Neural/metabolismo , Crânio/anormalidades , Crânio/metabolismo , Proteínas Supressoras de Tumor/genética
4.
Sci Rep ; 7: 44534, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28303927

RESUMO

Human mesenchymal stromal/stem cells (MSCs) are multipotent and currently undergoing hundreds of clinical trials for disease treatments. To date, no studies have generated induced MSCs from skin fibroblasts with chemicals or growth factors. Here, we established the first chemical method to convert primary human dermal fibroblasts into multipotent, induced MSC-like cells (iMSCs). The conversion method uses a defined cocktail of small molecules and growth factors, and it can achieve efficient conversion with an average rate of 38% in 6 days. The iMSCs have much higher clonogenicity than fibroblasts, and they can be maintained and expanded in regular MSC medium for at least 8 passages and further differentiated into osteoblasts, adipocytes, and chondrocytes. Moreover, the iMSCs can suppress LPS-mediated acute lung injury as effectively as bone marrow-derived mesenchymal stem cells. This finding may greatly benefit stem cell biology, cell therapy, and regenerative medicine.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Pele/citologia , Pele/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia
5.
PLoS One ; 12(3): e0173258, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28291836

RESUMO

Primary cilia are organelles extended from virtually all cells and are required for the proper regulation of a number of canonical developmental pathways. The role in cortical development of proteins important for ciliary form and function is a relatively understudied area. Here we have taken a genetic approach to define the role in forebrain development of three intraflagellar transport proteins known to be important for primary cilia function. We have genetically ablated Kif3a, Ift88, and Ttc21b in a series of specific spatiotemporal domains. The resulting phenotypes allow us to draw several conclusions. First, we conclude that the Ttc21b cortical phenotype is not due to the activity of Ttc21b within the brain itself. Secondly, some of the most striking phenotypes are from ablations in the neural crest cells and the adjacent surface ectoderm indicating that cilia transduce critical tissue-tissue interactions in the developing embryonic head. Finally, we note striking differences in phenotypes from ablations only one embryonic day apart, indicating very discrete spatiotemporal requirements for these three genes in cortical development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Transporte Biológico/genética , Cílios/fisiologia , Cinesinas/genética , Prosencéfalo/embriologia , Proteínas Supressoras de Tumor/genética , Animais , Camundongos , Camundongos Knockout
6.
Dev Biol ; 424(2): 124-137, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28286175

RESUMO

Ciliopathies are a class of diseases caused by the loss of a ubiquitous, microtubule-based organelle called a primary cilium. Ciliopathies commonly result in defective development of the craniofacial complex, causing midfacial defects, craniosynostosis, micrognathia and aglossia. Herein, we explored how the conditional loss of primary cilia on neural crest cells (Kif3af/f;Wnt1-Cre) generated aglossia. On a cellular level, our data revealed that aglossia in Kif3af/f;Wnt1-Cre embryos was due to a loss of mesoderm-derived muscle precursors migrating into and surviving in the tongue anlage. To determine the molecular basis for this phenotype, we performed RNA-seq, in situ hybridization, qPCR and Western blot analyses. We found that transduction of the Sonic hedgehog (Shh) pathway, rather than other pathways previously implicated in tongue development, was aberrant in Kif3af/f;Wnt1-Cre embryos. Despite increased production of full-length GLI2 and GLI3 isoforms, previously identified GLI targets important for mandibular and glossal development (Foxf1, Foxf2, Foxd1 and Foxd2) were transcriptionally downregulated in Kif3af/f;Wnt1-Cre embryos. Genetic removal of GLI activator (GLIA) isoforms in neural crest cells recapitulated the aglossia phenotype and downregulated Fox gene expression. Genetic addition of GLIA isoforms in neural crest cells partially rescued the aglossia phenotype and Fox gene expression in Kif3af/f;Wnt1-Cre embryos. Together, our data suggested that glossal development requires primary cilia-dependent GLIA activity in neural crest cells. Furthermore, these data, in conjunction with our previous work, suggested prominence specific roles for GLI isoforms; with development of the frontonasal prominence relying heavily on the repressor isoform and the development of the mandibular prominence/tongue relying heavily on the activator isoform.


Assuntos
Cílios/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Crista Neural/metabolismo , Língua/embriologia , Língua/metabolismo , Animais , Apoptose , Movimento Celular , Deleção de Genes , Proteínas Hedgehog/metabolismo , Integrases/metabolismo , Cinesinas , Mandíbula/embriologia , Mandíbula/metabolismo , Mesoderma/patologia , Camundongos , Modelos Biológicos , Músculos/patologia , Mutação/genética , Crista Neural/patologia , Organogênese , Fenótipo , Transdução de Sinais , Células-Tronco/patologia , Proteína Wnt1/metabolismo , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco
7.
PLoS Genet ; 12(11): e1006351, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27802276

RESUMO

Ciliopathies represent a broad class of disorders that affect multiple organ systems. The craniofacial complex is among those most severely affected when primary cilia are not functional. We previously reported that loss of primary cilia on cranial neural crest cells, via a conditional knockout of the intraflagellar transport protein KIF3a, resulted in midfacial widening due to a gain of Hedgehog (HH) activity. Here, we examine the molecular mechanism of how a loss of primary cilia can produce facial phenotypes associated with a gain of HH function. We show that loss of intraflagellar transport proteins (KIF3a or IFT88) caused aberrant GLI processing such that the amount of GLI3FL and GLI2FL was increased, thus skewing the ratio of GLIFL to GLIR in favor of the FL isoform. Genetic addition of GLI3R partially rescued the ciliopathic midfacial widening. Interestingly, despite several previous studies suggesting midfacial development relies heavily on GLI3R activity, the conditional loss of GLI3 alone did not reproduce the ciliopathic phenotype. Only the combined loss of both GLI2 and GLI3 was able to phenocopy the ciliopathic midfacial appearance. Our findings suggest that ciliopathic facial phenotypes are generated via loss of both GLI3R and GLI2R and that this pathology occurs via a de-repression mechanism. Furthermore, these studies suggest a novel role for GLI2R in craniofacial development.


Assuntos
Cílios/genética , Ciliopatias/genética , Face/embriologia , Fatores de Transcrição Kruppel-Like/genética , Proteínas do Tecido Nervoso/genética , Animais , Cílios/patologia , Ciliopatias/patologia , Face/patologia , Regulação da Expressão Gênica no Desenvolvimento , Cinesinas/genética , Camundongos , Camundongos Transgênicos , Fenótipo , Isoformas de Proteínas/genética , Modificação Traducional de Proteínas/genética , Transdução de Sinais/genética , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco
8.
Dev Biol ; 415(2): 326-337, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26597494

RESUMO

The chicken has been a particularly useful model for the study of craniofacial development and disease for over a century due to their relatively large size, accessibility, and amenability for classical bead implantation and transplant experiments. Several naturally occurring mutant lines with craniofacial anomalies also exist and have been heavily utilized by developmental biologist for several decades. Two of the most well known lines, talpid(2) (ta(2)) and talpid(3) (ta(3)), represent the first spontaneous mutants to have the causative genes identified. Despite having distinct genetic causes, both mutants have recently been identified as ciliopathic. Excitingly, both of these mutants have been classified as models for human craniofacial ciliopathies: Oral-facial-digital syndrome (ta(2)) and Joubert syndrome (ta(3)). Herein, we review and compare these two models of craniofacial disease and highlight what they have revealed about the molecular and cellular etiology of ciliopathies. Furthermore, we outline how applying classical avian experiments and new technological advances (transgenics and genome editing) with naturally occurring avian mutants can add a tremendous amount to what we currently know about craniofacial ciliopathies.


Assuntos
Galinhas/genética , Ciliopatias/genética , Anormalidades Craniofaciais/genética , Modelos Animais de Doenças , Desenvolvimento Maxilofacial/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Cerebelo/anormalidades , Cerebelo/metabolismo , Embrião de Galinha , Ciliopatias/embriologia , Ciliopatias/veterinária , Anormalidades Craniofaciais/embriologia , Anormalidades Craniofaciais/veterinária , Anormalidades do Olho/genética , Anormalidades do Olho/metabolismo , Genes Letais , Estudos de Associação Genética , Humanos , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Camundongos , Mutação , Síndromes Orofaciodigitais/embriologia , Síndromes Orofaciodigitais/genética , Polidactilia/genética , Polidactilia/veterinária , Doenças das Aves Domésticas/embriologia , Doenças das Aves Domésticas/genética , Retina/anormalidades , Retina/metabolismo
9.
Dis Model Mech ; 8(8): 855-66, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26044959

RESUMO

Oral-facial-digital syndrome (OFD) is a ciliopathy that is characterized by oral-facial abnormalities, including cleft lip and/or palate, broad nasal root, dental anomalies, micrognathia and glossal defects. In addition, these individuals have several other characteristic abnormalities that are typical of a ciliopathy, including polysyndactyly, polycystic kidneys and hypoplasia of the cerebellum. Recently, a subset of OFD cases in humans has been linked to mutations in the centriolar protein C2 Ca(2+)-dependent domain-containing 3 (C2CD3). Our previous work identified mutations in C2CD3 as the causal genetic lesion for the avian talpid(2) mutant. Based on this common genetic etiology, we re-examined the talpid(2) mutant biochemically and phenotypically for characteristics of OFD. We found that, as in OFD-affected individuals, protein-protein interactions between C2CD3 and oral-facial-digital syndrome 1 protein (OFD1) are reduced in talpid(2) cells. Furthermore, we found that all common phenotypes were conserved between OFD-affected individuals and avian talpid(2) mutants. In light of these findings, we utilized the talpid(2) model to examine the cellular basis for the oral-facial phenotypes present in OFD. Specifically, we examined the development and differentiation of cranial neural crest cells (CNCCs) when C2CD3-dependent ciliogenesis was impaired. Our studies suggest that although disruptions of C2CD3-dependent ciliogenesis do not affect CNCC specification or proliferation, CNCC migration and differentiation are disrupted. Loss of C2CD3-dependent ciliogenesis affects the dispersion and directional persistence of migratory CNCCs. Furthermore, loss of C2CD3-dependent ciliogenesis results in dysmorphic and enlarged CNCC-derived facial cartilages. Thus, these findings suggest that aberrant CNCC migration and differentiation could contribute to the pathology of oral-facial defects in OFD.


Assuntos
Proteínas Aviárias/genética , Proteínas de Ciclo Celular/genética , Mutação/genética , Síndromes Orofaciodigitais/genética , Síndromes Orofaciodigitais/patologia , Animais , Proteínas Aviárias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Movimento Celular , Proliferação de Células , Embrião de Galinha , Galinhas , Cílios/metabolismo , Modelos Animais de Doenças , Humanos , Crista Neural/embriologia , Crista Neural/patologia , Organogênese , Fenótipo
10.
Hum Mol Genet ; 24(12): 3399-409, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25759469

RESUMO

Autosomal dominant omodysplasia is a rare skeletal dysplasia characterized by short humeri, radial head dislocation, short first metacarpals, facial dysmorphism and genitourinary anomalies. We performed next-generation whole-exome sequencing and comparative analysis of a proband with omodysplasia, her unaffected parents and her affected daughter. We identified a de novo mutation in FRIZZLED2 (FZD2) in the proband and her daughter that was not found in unaffected family members. The FZD2 mutation (c.1644G>A) changes a tryptophan residue at amino acid 548 to a premature stop (p.Trp548*). This altered protein is still produced in vitro, but we show reduced ability of this mutant form of FZD2 to interact with its downstream target DISHEVELLED. Furthermore, expressing the mutant form of FZD2 in vitro is not able to facilitate the cellular response to canonical Wnt signaling like wild-type FZD2. We therefore conclude that the FRIZZLED2 mutation is a de novo, novel cause for autosomal dominant omodysplasia.


Assuntos
Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Úmero/anormalidades , Ossos Metacarpais/anormalidades , Mutação , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Via de Sinalização Wnt , Adulto , Sequência de Aminoácidos , Substituição de Aminoácidos , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Análise Mutacional de DNA , Exoma , Fácies , Feminino , Receptores Frizzled/química , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Úmero/metabolismo , Lactente , Ossos Metacarpais/metabolismo , Osteocondrodisplasias/diagnóstico , Linhagem , Fenótipo , Ligação Proteica , Transporte Proteico , Radiografia
11.
Free Radic Biol Med ; 79: 324-36, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25464273

RESUMO

Altered metabolic phenotype has been recognized as a hallmark of tumor cells for many years, but this aspect of the cancer phenotype has come into greater focus in recent years. NOS2 (inducible nitric oxide synthase of iNOS) has been implicated as a component in many aggressive tumor phenotypes, including melanoma, glioblastoma, and breast cancer. Nitric oxide has been well established as a modulator of cellular bioenergetics pathways, in many ways similar to the alteration of cellular metabolism observed in aggressive tumors. In this review we attempt to bring these concepts together with the general hypothesis that one function of NOS2 and NO in cancer is to modulate metabolic processes to facilitate increased tumor aggression. There are many mechanisms by which NO can modulate tumor metabolism, including direct inhibition of respiration, alterations in mitochondrial mass, oxidative inhibition of bioenergetic enzymes, and the stimulation of secondary signaling pathways. Here we review metabolic alterations in the context of cancer cells and discuss the role of NO as a potential mediator of these changes.


Assuntos
Neoplasias/metabolismo , Óxido Nítrico/metabolismo , Animais , Metabolismo Energético , Humanos , Neoplasias/patologia
12.
Free Radic Biol Med ; 69: 229-38, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24486553

RESUMO

Energy substrates metabolized through mitochondria (e.g., pyruvate, glutamine) are required for biosynthesis of macromolecules in proliferating cells. Because several mitochondrial proteins are known to be targets of S-nitrosation, we determined whether bioenergetics are modulated by S-nitrosation and defined the subsequent effects on proliferation. The nitrosating agent S-nitroso-L-cysteine (L-CysNO) was used to initiate intracellular S-nitrosation, and treatment decreased mitochondrial function and inhibited proliferation of MCF7 mammary adenocarcinoma cells. Surprisingly, the d-isomer of CysNO (D-CysNO), which is not transported into cells, also caused mitochondrial dysfunction and limited proliferation. Both L- and D-CysNO also inhibited cellular pyruvate uptake and caused S-nitrosation of thiol groups on monocarboxylate transporter 1, a proton-linked pyruvate transporter. These data demonstrate the importance of mitochondrial metabolism in proliferative responses in breast cancer and highlight a novel role for inhibition of metabolic substrate uptake through S-nitrosation of exofacial protein thiols in cellular responses to nitrosative stress.


Assuntos
Mitocôndrias/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Nitrosação , Ácido Pirúvico/metabolismo , Simportadores/metabolismo , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Respiração Celular/genética , Cisteína/administração & dosagem , Cisteína/análogos & derivados , Humanos , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Óxido Nítrico/metabolismo , S-Nitrosotióis/administração & dosagem , Compostos de Sulfidrila/metabolismo
13.
J Orthop Res ; 31(3): 350-6, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23034798

RESUMO

Primary cilia are present on most cell types including chondrocytes. Dysfunction of primary cilia results in pleiotropic symptoms including skeletal dysplasia. Previously, we showed that deletion of Ift88 and subsequent depletion of primary cilia from chondrocytes resulted in disorganized columnar structure and early loss of growth plate. To understand underlying mechanisms whereby Ift88 regulates growth plate function, we compared gene expression profiles in normal and Ift88 deleted growth plates. Pathway analysis indicated that Hedgehog (Hh) signaling was the most affected pathway in mutant growth plate. Expression of the Wnt antagonist, Sfrp5, was also down-regulated. In addition, Sfrp5 was up-regulated by Shh in rib chondrocytes and regulation of Sfrp5 by Shh was attenuated in mutant cells. This result suggests Sfrp5 is a downstream target of Hh and that Ift88 regulates its expression. Sfrp5 is an extracellular antagonist of Wnt signaling. We observed an increase in Wnt/ß-catenin signaling specifically in flat columnar cells of the growth plate in Ift88 mutant mice as measured by increased expression of Axin2 and Lef1 as well as increased nuclear localization of ß-catenin. We propose that Ift88 and primary cilia regulate expression of Sfrp5 and Wnt signaling pathways in growth plate via regulation of Ihh signaling.


Assuntos
Condrócitos/metabolismo , Lâmina de Crescimento/metabolismo , Proteínas Hedgehog/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Supressoras de Tumor/metabolismo , beta Catenina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Células Cultivadas , Condrócitos/citologia , Cílios/metabolismo , Regulação para Baixo/genética , Lâmina de Crescimento/citologia , Camundongos , Camundongos Mutantes , Costelas/citologia , Costelas/crescimento & desenvolvimento , Costelas/fisiologia , Transcriptoma/fisiologia , Proteínas Supressoras de Tumor/genética , Regulação para Cima/genética , Via de Sinalização Wnt/fisiologia
14.
Biochem J ; 444(3): 561-71, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22458763

RESUMO

Recent studies have highlighted the fact that cancer cells have an altered metabolic phenotype, and this metabolic reprogramming is required to drive the biosynthesis pathways necessary for rapid replication and proliferation. Specifically, the importance of citric acid cycle-generated intermediates in the regulation of cancer cell proliferation has been recently appreciated. One function of MCTs (monocarboxylate transporters) is to transport the citric acid cycle substrate pyruvate across the plasma membrane and into mitochondria, and inhibition of MCTs has been proposed as a therapeutic strategy to target metabolic pathways in cancer. In the present paper, we examined the effect of different metabolic substrates (glucose and pyruvate) on mitochondrial function and proliferation in breast cancer cells. We demonstrated that cancer cells proliferate more rapidly in the presence of exogenous pyruvate when compared with lactate. Pyruvate supplementation fuelled mitochondrial oxygen consumption and the reserve respiratory capacity, and this increase in mitochondrial function correlated with proliferative potential. In addition, inhibition of cellular pyruvate uptake using the MCT inhibitor α-cyano-4-hydroxycinnamic acid impaired mitochondrial respiration and decreased cell growth. These data demonstrate the importance of mitochondrial metabolism in proliferative responses and highlight a novel mechanism of action for MCT inhibitors through suppression of pyruvate-fuelled mitochondrial respiration.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Mitocôndrias/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Pirúvico/antagonistas & inibidores , Ácido Pirúvico/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Respiração Celular/fisiologia , Ácidos Cumáricos/farmacologia , Feminino , Humanos , Mitocôndrias/efeitos dos fármacos , Ácido Pirúvico/farmacologia
15.
Small ; 7(23): 3363-70, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21997958

RESUMO

Fluorescent nanodiamond (FND) has excellent biocompatibility and photostability, making it well suited for long-term labeling and tracking of cancer and stem cells. To prove the concept, the exocytosis of FND particles (size ≈100 nm) from three cell lines--HeLa cervical cancer cells, 3T3-L1 pre-adipocytes, and 489-2.1 multipotent stromal cells--is studied in detail. FND labeling is performed by incubating the cells in a serum-free medium containing 80 µg mL(-1) FND for 4 h. No significant alteration in growth or proliferation of the FND-labeled cells, including the multipotent stromal cells, is observed for up to 8 days. Flow cytometric analysis, in combination with parallel cell doubling-time measurements, indicates that there is little (≈15% or less) excretion of the endocytosed FND particles after 6 days of labeling for both HeLa and 489-2.1 cells, but exocytosis occurs more readily (up to 30%) for 3T3-L1 preadipocytes. A comparative experiment with FND and the widely used dye, carboxyfluorescein diacetate succinimidyl ester, demonstrates that the nanoparticle platform is a promising alternate probe for long-term cell labeling and tracking applications.


Assuntos
Rastreamento de Células/métodos , Exocitose , Nanodiamantes/química , Células 3T3-L1 , Animais , Ciclo Celular , Citometria de Fluxo , Fluoresceínas/metabolismo , Células HeLa , Humanos , Luz , Camundongos , Microscopia de Fluorescência , Espalhamento de Radiação , Coloração e Rotulagem , Succinimidas/metabolismo
16.
J Biomed Mater Res A ; 86(4): 1097-105, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18080299

RESUMO

Multipotential mesenchymal stem cells (MSCs) isolated from bone marrow can differentiate into multiple mesenchymal tissues and exhibit a neuronal phenotype under appropriate induction conditions. Methods promoting neural differentiation have been adapted to derive insulin producing cells (IPCs) from embryonic stem cells, but it remains unclear whether neuronal cell-based differentiation method will be able to derive IPCs from MSCs. Using a four-stage differentiation protocol which contains neuronal differentiation factor and IPC-conversion reagent-nicotinamide, the potential of human MSCs to differentiate into IPCs was evaluated by means of reverse transcription-polymerase chain reaction, immunostaining, and functional analysis. MSCs in monolayer spontaneously expressed genes for islet transcription factors, Nkx6.1 and Ngn3, but did not express insulin after treatment in this protocol. Pellet suspension culture and the addition of fibronectin enhanced pancreatic differentiation with increase in insulin and Glut2 gene expression. Switching of cells to high-glucose culture further increased immunostaining for proinsulin and insulin. IPCs secreted insulin in response to elevated glucose concentration, which was regulated by reagents that increase cyclic AMP production or modify calcium influx. Our data suggest that MSCs in the monolayer do not undergo IPC differentiation and pellet suspension culture with fibronectin promotes IPCs derived from MSCs.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Fibronectinas/farmacologia , Células Secretoras de Insulina/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Agregação Celular/efeitos dos fármacos , Ectoderma/citologia , Ectoderma/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Humanos , Insulina/metabolismo , Mesoderma/citologia , Mesoderma/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Proinsulina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Front Biosci ; 12: 4393-401, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17485383

RESUMO

Transforming growth factor-beta (TGF-beta) is a multifunctional polypeptide that regulates cell growth, differentiation, and extracellular matrix formation. Studies on genetically engineered animal models have demonstrated that TGF-beta-mediated signaling pathway plays a critical role in both normal development and tumorigenesis of the breast. In pathogenesis of breast cancer, the role of TGF-beta appears featured with growth-inhibitory effects at early stages of carcinogenesis, but aggressive oncogenesis with transition to more advanced malignant states. The TGF-beta signaling pathway is also tissue-context and ligand content-dependent. Therein, therapeutic modulation of TGF-beta signaling may be a multifactorial event.


Assuntos
Neoplasias da Mama/metabolismo , Mama/crescimento & desenvolvimento , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Feminino , Humanos , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
18.
J Biomed Mater Res A ; 80(2): 466-74, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17013867

RESUMO

Tissue engineering aiming to repair or regenerate damaged tissues necessitates fabricating three-dimensional biomaterial scaffolds with controlled porosity for delivering cells. To facilitate cell distribution, a strategy using stem cell-based fabrication of biomaterials was tested in type II collagen fibers. Human mesenchymal stem cells when delivered in type II collagen assembled and reorganized these matrices and differentiated into spherical chondrocytes with the synthesis of cartilage proteins. The cell-mediated assembly and reorganization of collagen fibers was not limitless and only restricted to an appropriate ratio of cell number and collagen amount. The blocking of alpha2 or beta1-integrin function with specific antibodies significantly impeded the collagen-assembly effects. In vitro chondrogenesis or in vivo cartilage formation of human mesenchymal stem cells was also dependent on the interactions between cells and surrounding matrices. This method for three-dimensional fabricating collagen fibers may generally be applied to other biomaterials, when combined with surface modification or ligand addition for cell adhesion.


Assuntos
Colágeno/metabolismo , Matriz Extracelular/metabolismo , Integrinas/metabolismo , Células-Tronco Mesenquimais/fisiologia , Materiais Biocompatíveis , Adesão Celular , Condrócitos/citologia , Condrogênese , Humanos , Células-Tronco Mesenquimais/citologia , Ligação Proteica , Engenharia Tecidual/métodos
19.
Mol Cancer Res ; 4(4): 257-65, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16603639

RESUMO

Genetic defects in polymerase eta (pol eta; hRad30a gene) result in xeroderma pigmentosum variant syndrome (XP-V), and XP-V patients are sensitive to sunlight and highly prone to cancer development. Here, we show that pol eta plays a significant role in modulating cellular sensitivity to DNA-targeting anticancer agents. When compared with normal human fibroblast cells, pol eta-deficient cells derived from XP-V patients were 3-fold more sensitive to beta-d-arabinofuranosylcytosine, gemcitabine, or cis-diamminedichloroplatinum (cisplatin) single-agent treatments and at least 10-fold more sensitive to the gemcitabine/cisplatin combination treatment, a commonly used clinical regimen for treating a wide spectrum of cancers. Cellular and biochemical analyses strongly suggested that the higher sensitivity of XP-V cells to these agents was due to the inability of pol eta-deficient cells to help resume the DNA replication process paused by the gemcitabine/cisplatin-introduced DNA lesions. These results indicated that pol eta can play an important role in determining the cellular sensitivity to therapeutic agents. The findings not only illuminate pol eta as a potential pharmacologic target for developing new anticancer agents but also provide new directions for improving future chemotherapy regimen design considering the use of nucleoside analogues and cisplatin derivatives.


Assuntos
Antineoplásicos/farmacologia , DNA Polimerase Dirigida por DNA/fisiologia , DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Xeroderma Pigmentoso/genética , DNA/química , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/análise , DNA Polimerase Dirigida por DNA/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Humanos , Nucleosídeos/química , Nucleosídeos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Xeroderma Pigmentoso/enzimologia
20.
Cell Tissue Res ; 324(3): 457-66, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16505995

RESUMO

The expression of alpha-smooth muscle actin (SMA) by human mesenchymal stem cells (hMSCs) during chondrogenesis was investigated by the use of pellet culture. Undifferentiated hMSCs expressed low but detectable amounts of SMA and the addition of transforming growth factor beta1 (TGF-beta1) to the culture medium increased SMA expression in a dose-dependent manner. Differentiation in pellet culture was rapidly induced in the presence of TGF-beta1 and was accompanied by the development of annular layers at the surface of the pellet. These peripheral layers lacked expression of glycosaminoglycan and type II collagen during early differentiation. Progress in differentiation increased the synthesis of glycosaminoglycan and type II collagen and the expression of SMA in these layers. Double-staining for type II collagen and SMA by immunofluorescence demonstrated the differentiation of hMSCs into cells positive for these two proteins. The addition of cytochalasin D, a potent inhibitor of the polymerization of actin microfilaments, caused damage to the structural integrity and surface smoothness of the chondrogenic pellets. The SMA-positive cells in the peripheral layers of the chondrogenic pellets mimic those within the superficial layer of articular cartilage and are speculated to play a major role in cartilage development and maintenance.


Assuntos
Actinas/biossíntese , Condrócitos/fisiologia , Condrogênese , Células-Tronco Mesenquimais/fisiologia , Actinas/antagonistas & inibidores , Cartilagem Articular/metabolismo , Diferenciação Celular , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Colágeno Tipo II/biossíntese , Citocalasina D/farmacologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Feminino , Glicosaminoglicanos/biossíntese , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Miócitos de Músculo Liso/metabolismo , Isoformas de Proteínas/biossíntese , Fator de Crescimento Transformador beta1/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA