Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Sci Rep ; 14(1): 7244, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538745

RESUMO

We aimed to evaluate whether white and gray matter microstructure changes observed with magnetic resonance imaging (MRI)-based diffusion tensor imaging (DTI) can be used to reflect the progression of chronic brain trauma. The MRI-DTI parameters, neuropathologic changes, and behavioral performance of adult male Wistar rats that underwent moderate (2.1 atm on day "0") or repeated mild (1.5 atm on days "0" and "2") traumatic brain injury (TBI or rmTBI) or sham operation were evaluated at 7 days, 14 days, and 1-9 months after surgery. Neurobehavioral tests showed that TBI causes long-term motor, cognitive and neurological deficits, whereas rmTBI results in more significant deficits in these paradigms. Both histology and MRI show that rmTBI causes more significant changes in brain lesion volumes than TBI. In vivo DTI further reveals that TBI and rmTBI cause persistent microstructural changes in white matter tracts (such as the body of the corpus callosum, splenium of corpus callus, internal capsule and/or angular bundle) of both two hemispheres. Luxol fast blue measurements reveal similar myelin loss (as well as reduction in white matter thickness) in ipsilateral and contralateral hemispheres as observed by DTI analysis in injured rats. These data indicate that the disintegration of microstructural changes in white and gray matter parameters analyzed by MRI-DTI can serve as noninvasive and reliable markers of structural and functional level alterations in chronic TBI.


Assuntos
Lesões Encefálicas Traumáticas , Substância Branca , Masculino , Ratos , Animais , Imagem de Tensor de Difusão/métodos , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Ratos Wistar , Imageamento por Ressonância Magnética , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
2.
Sci Prog ; 107(1): 368504241231154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425276

RESUMO

The underlying mechanisms for the beneficial effects exerted by bone marrow-mesenchymal stem cells (BM-MSCs) in treating repetitive traumatic brain injury (rTBI)-induced long-term sensorimotor/cognitive impairments are not fully elucidated. Herein, we aimed to explore whether BM-MSCs therapy protects against rTBI-induced long-term neurobehavioral disorders in rats via normalizing white matter integrity and gray matter microglial response. Rats were subjected to repeated mild lateral fluid percussion on day 0 and day 3. On the fourth day post-surgery, MSCs groups received MSCs (4 × 106 cells/ml/kg, intravenously) and were assessed by the radial maze, Y maze, passive avoidance tests, and modified neurological severity scores. Hematoxylin & eosin, and Luxol fast blue stainings were used to examine the histopathology and white matter thickness. At the same time, immunofluorescence staining was used to investigate the numbers of tumor necrosis factor-alpha (TNF-α)-containing microglia in gray matter. Three to nine months after neurotrauma, rats displayed sensorimotor and cognitive impairments, reduced thickness in white matter, and over-accumulation of TNF-α-containing microglia and cellular damage in gray matter. Therapy with BM-MSCs significantly attenuated the rTBI-induced sensorimotor and cognitive impairments and all their complications. Mesenchymal stem cell therapy might accelerate the recovery of sensorimotor and cognitive impairments in rats with rTBI via normalizing myelin integrity and microglia response.


Assuntos
Lesões Encefálicas Traumáticas , Disfunção Cognitiva , Células-Tronco Mesenquimais , Ratos , Animais , Bainha de Mielina , Microglia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia , Lesões Encefálicas Traumáticas/terapia , Cognição
3.
PLoS One ; 18(3): e0281873, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36862682

RESUMO

Urine-based cytology is non-invasive and widely used for clinical diagnosis of urothelial carcinoma (UC), but its sensitivity is less than 40% for low-grade UC detection. As such, there is a need for new diagnostic and prognostic biomarkers of UC. CUB domain containing protein 1 (CDCP1) is a type I transmembrane glycoprotein highly expressed in various cancers. Using tissue array analysis, we demonstrated that CDCP1 expression in UC patients (n = 133), especially in those with low-grade UC, was significantly higher than in 16 normal persons. In addition, CDCP1 expression in urinary UC cells could also be detected by using immunocytochemistry method (n = 11). Furthermore, in 5637-CD cells, overexpression of CDCP1 affected the expression of epithelial mesenchymal transition-related markers and increased matrix metalloproteinase 2 expression and migration ability. Conversely, the knockdown of CDCP1 in T24 cells had the opposite effects. Using specific inhibitors, we demonstrated the involvement of c-Src/PKCδ signaling in the CDCP1-regulated migration of UC. In conclusion, our data suggest that CDCP1 contributes to the malignant progression of UC and may have the potential as a urine-based biomarker for detecting low-grade UC. However, a cohort study needs to be conducted.


Assuntos
Líquidos Corporais , Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/diagnóstico , Metaloproteinase 2 da Matriz , Biomarcadores , Antígenos de Neoplasias , Moléculas de Adesão Celular/genética
4.
Biomed Pharmacother ; 160: 114372, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773524

RESUMO

BACKGROUND: Although traumatic brain injury (TBI) occurs in a very short time, the biological consequence of a TBI, such as Alzheimer's disease, may last a lifetime. To date, effective interventions are not available to improve recovery from a TBI. Herein we aimed to ascertain whether recovery of neurosurgical high-frequency irreversible electroporation (HFIRE) injury in brain tissues can be accelerated by 7,8-dihydroxyflavone (7,8-DHF). METHODS: The HFIRE injury was induced in the right parietal cortex of 8 adult healthy and neurologically intact male dogs. Two weeks before HFIRE injury, each dog was administered orally with or without 7,8-DHF (30 mg/kg) once daily for consecutive 2 weeks (n = 4 for each group). The values of blood-brain barrier (BBB) disruption, brain edema, and cerebral infarction volumes were measured. The concentrations of beta-amyloid, interleukin-1ß, interleukin-6 and tumor necrosis factor-α in the cerebrospinal fluid were measured biochemically. RESULTS: The BBB disruption, brain edema, infarction volumes, and maximal cross-section area caused by HFIRE injury in canine brain were significantly attenuated by 7,8-DHF therapy (P < 0.0001). Additionally, 7,8-DHF significantly reduced the HFIRE-induced cerebral overproduction of beta-amyloid and proinflammatory cytokines in the cerebrospinal fluid (P < 0.0001) in dogs with HFIRE. CONCLUSIONS: Recovery of neurosurgical HFIRE injury in canine brain tissues can be accelerated by 7,8-DHT via ameliorating BBB disruption as well as cerebral overproduction of both beta-amyloid and proinflammatory cytokines.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Cães , Masculino , Animais , Edema Encefálico/patologia , Lesões Encefálicas Traumáticas/patologia , Citocinas/farmacologia , Eletroporação , Barreira Hematoencefálica , Peptídeos beta-Amiloides/farmacologia
5.
Life (Basel) ; 12(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36362994

RESUMO

Pomegranate (Punica granatum L.) fruit demonstrates the repressive effectiveness of many tumors. Our previous studies showed that the PEP (pomegranate peel extract) E2 fraction obtained from the ethyl acetate layer of the pomegranate peel's ethanol extract exhibited the highest inhibitory activities to induce Urinary bladder urothelial carcinoma (UBUC) cell apoptosis. The ethyl acetate layer could lower the volume and weight of T24 tumors and initiate apoptosis in nude mice xenografted bladder tumors. In this study, we intended to clarify the inhibitory molecular process of Taiwanese local pomegranate peel to urinary bladder urothelial carcinoma using a proteomics strategy. Gel-based proteomics (two-dimensional gel electrophoresis coupled with tandem mass spectrometry) was used to get an insight into the molecular mechanisms initiated by PEPE2 to evoke bladder cancer cell apoptosis. We found eleven down-regulated and eight up-regulated proteins in PEPE2-treated T24 cells. Our results implied that these PEPE2-dysregulated proteins belong to cell apoptosis, cell proliferation, death receptor signaling, JAK/STAT signaling, the PPAR pathway, the PPARα/RXR α pathway, Rho family GTPase signaling, and RhoGDI signaling. In addition, HSP90 and PTP1B proteins, associated with apoptosis, were de-regulated in xenografted bladder tumors in nude mice fed with an ethyl acetate layer of ethanol extract. The findings above implied that pomegranate might be a potential chemopreventive resource for UBUC carcinogenesis.

6.
Aging Cell ; 20(5): e13340, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33783931

RESUMO

Amyloid-beta (Aß) oligomer is known to contribute to the pathophysiology of age-related macular degeneration. Herein, we aimed to elucidate the in vivo and in vitro effects of Aß1-42 application on retinal morphology in rats. Our in vivo studies revealed that intracerebroventricular administration of Aß1-42 oligomer caused dysmorphological changes in both retinal ganglion cells and retinal pigment epithelium. In addition, in vitro studies revealed that ARPE-19 cells following Aß1-42 oligomer application had decreased viability along with apoptosis and decreased expression of the tight junction proteins, increased expression of both phosphor-AKT and phosphor-GSK3ß and decreased expression of both SIRT1 and ß-catenin. Application of conditioned medium (CM) obtained from mesenchymal stem cells (MSC) protected against Aß1-42 oligomer-induced retinal pathology in both rats and ARPE-19 cells. In order to explore the potential role of peptides secreted from the MSCs, we applied mass spectrometry to compare the peptidomics profiles of the MSC-CM. Gene ontology enrichment analysis and String analysis were performed to explore the differentially expressed peptides by predicting the functions of their precursor proteins. Bioinformatics analysis showed that 3-8 out of 155-163 proteins in the MSC-CM maybe associated with SIRT1/pAKT/pGSK3ß/ß-catenin, tight junction proteins, and apoptosis pathway. In particular, the secretomes information on the MSC-CM may be helpful for the prevention and treatment of retinal pathology in age-related macular degeneration.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Células-Tronco Mesenquimais/metabolismo , Retina/patologia , Doença de Alzheimer/induzido quimicamente , Peptídeos beta-Amiloides , Animais , Apoptose , Hipóxia Celular , Linhagem Celular , Meios de Cultivo Condicionados , Modelos Animais de Doenças , Humanos , Aprendizagem , Fragmentos de Peptídeos , Ratos , Degeneração Retiniana/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais , Memória Espacial , Proteínas de Junções Íntimas/metabolismo , beta Catenina/metabolismo
7.
Sci Rep ; 10(1): 14409, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873851

RESUMO

To date, there is no good evidence that intestine epithelial cells (IEC) affected by ischemia/reperfusion (I/R) injury are able to cause cortical neuron injury directly. Additionally, it remains unclear whether the neuronal damage caused by I/R injured IEC can be affected by therapeutic hypothermia (TH, 32 °C). To address these questions, we performed an oxygen-glucose deprivation (OGD) affected IEC-6-primary cortical neuron coculture system under normothermia (37 °C) or TH (32 °C) conditions. It was found that OGD caused hyperpermeability in IEC-6 cell monolayers. OGD-preconditioned IEC-6 cells caused cortical neuronal death (e.g., decreased cell viability), synaptotoxicity, and neuronal apoptosis (evidenced by increased caspase-3 expression and the number of TUNEL-positive cells), necroptosis (evidenced by increased receptor-interacting serine/threonine-protein kinase-1 [RIPK1], RIPK3 and mixed lineage kinase domain-like pseudokinase [MLKL] expression), and pyroptosis (evidenced by an increase in caspase-1, gasdermin D [GSDMD], IL-1ß, IL-18, the apoptosis-associated speck-like protein containing a caspase recruitment domain [ASC], and nucleotide oligomerization domain [NOD]-like receptor [NLRP]-1 expression). TH did not affect the intestinal epithelial hyperpermeability but did attenuate OGD-induced neuronal death and synaptotoxicity. We also performed quantitative real-time PCR to quantify the genes encoding 84 exosomal microRNAs in the medium of the control-IEC-6, the control-neuron, the OGD-IEC-6 at 37 °C, the OGD-IEC-6 at 32 °C, the neuron cocultured with OGD-IEC-6 at 37 °C, and the neurons cocultured with OGD-IEC-6 at 32 °C. We found that the control IEC-6 cell s or cortical neurons are able to secrete a basal level of exosomal miRNAs in their medium. OGD significantly up-regulated the basal level of each parameter for IEC-6 cells. As compared to those of the OGD-IEC-6 cells or the control neurons, the OGD-IEC-6 cocultured neurons had significantly higher levels of 19 exosomal miRNAs related to apoptosis, necroptosis, and/or pyroptosis events. Our results identify that I/R injured intestinal epithelium cells can induce cortical neuron death via releasing paracrine mediators such as exosomal miRNAs associated with apoptosis, necroptosis, and/or pyroptosis, which can be counteracted by TH.


Assuntos
Hipóxia Celular , Córtex Cerebral/citologia , Células Epiteliais/metabolismo , Exossomos/metabolismo , Glucose/metabolismo , Mucosa Intestinal/citologia , MicroRNAs/metabolismo , Necroptose , Neurônios/metabolismo , Piroptose , Animais , Linhagem Celular , Sobrevivência Celular , Córtex Cerebral/embriologia , Técnicas de Cocultura , Hipotermia/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo
8.
Med Sci Monit ; 26: e924411, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32886655

RESUMO

BACKGROUND An innovative animal running wheel with an individualized design was implemented for the rehabilitation of rats following ischemic stroke. MATERIAL AND METHODS The design of the running wheel platform included the running wheel and a side plate for exercise area adjustments. A U-curve with a width of 2 cm was drawn on the lower half of the side plate for the dynamic adjustments of five infrared (IR) sensors based on the physical fitness of the rats. The individualized training process for this running wheel consisted of 2 days of free training to record their average and maximum speeds, 3 days of progressive training to determine their exercise areas, and 2 weeks of normal training based on their average speeds, maximum speeds, and exercise areas. Blood samples were obtained from the tail veins of all rats before the operations and on Days 14, 21, and 28 postsurgery to measure cortisol levels. The motor function tests were performed on Days 7 and 28 postsurgery. On Day 28 postsurgery, the rats were sacrificed under anesthesia, and their brains were removed for Nissl and H&E staining. RESULTS On Day 28 after surgery, the motor function, lesion volume, and cell damage of the DEARW and control groups differed significantly, indicating that this device is effective for stroke rehabilitation. CONCLUSIONS The outcomes of the rats that were rehabilitated using the newly designed training system were better than those of their control-group counterparts, indicating the advantages of this designed system.


Assuntos
Modelos Animais de Doenças , AVC Isquêmico , Condicionamento Físico Animal/instrumentação , Reabilitação do Acidente Vascular Cerebral , Animais , Masculino , Ratos , Ratos Sprague-Dawley
9.
Int J Med Sci ; 17(4): 525-535, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174783

RESUMO

We aimed to ascertain whether therapeutic hypothermia (TH) acts as cardioprotective management for heat stroke (HS). Adult male rats under general anesthesia were exposed to whole-body heating (43°C for 70 min) to induce HS. Rats with HS displayed hyperthermia (core body temperature 42°C vs. 36°C); hypotension (30 mmHg vs. 90 mmHg mean arterial blood pressure); suppressed left ventricular (LV) performance (stroke volume 52 µl/min vs. 125 µl/min), ejection fraction (0.29% vs. 0.69%), relaxation factor (72 ms vs. 12 ms), and arterial elastance (0.31 mmHg/ µl vs. 10 mmHg/ µl); increased myocardial injury markers (e.g., creatine kinase-MB: 86 U/L vs. 24 U/L, cardiac troponin I: 3.08 ng/ml vs. 0.57 ng/ml); increased myocardial oxidative stress markers (e.g., malondialdehyde: 6.52 nmol/mg vs. 1.06 nmol/mg, thiobarbituric acid-reactive substances: 29 nmol/g vs. 2 nmol/g); decreased myocardial antioxidants (e.g., superoxide dismutase: 6 unit/mg vs. 17 unit/mg, reduced glutathione: 0.64 nmol/mg vs. 2.53 nmol/mg); increased myocardial proinflammatory cytokines (e.g., tumor necrosis factor-α 3200 pg/ml vs. 1000 pg/ml, interleukin-6: 668 pg/ml vs. 102 pg/ml); and increased cardiac damage scores (2.2 vs. 0.3). TH therapy significantly reversed the following conditions: HS-induced hyperthermia (37.5°C core body temperature), hypotension (71 mmHg), suppressed LV performance (stroke volume: 97 µl/min, ejection fraction: 0.65%, relaxation factor: 39 ms, and arterial elastance: 0.99 mmHg/µl), increased myocardial injury markers (e.g., creatine kinase-MB: 37 U/L, cardiac troponin I: 1.06 ng/ml), increased myocardial oxidative stress markers (e.g., malondialdehyde: 2.68 nmol/mg, thiobarbituric acid-reactive substances: 12.3 nmol/g), decreased myocardial antioxidants (e.g., superoxide dismutase: 13.3 unit/mg, reduced glutathione: 2.71 mmol/mg), increased myocardial proinflammatory cytokines (e.g., tumor necrosis factor-α 1500 pg/ml, interleukin-6: 108 ng/ml); and increased cardiac damage scores (0.9). We thus conclude that TH protects against HS-induced arterial hypotension by promoting LV performance in rats. These results add to the literature regarding the use of TH as cardioprotective management for HS.


Assuntos
Artérias/fisiopatologia , Golpe de Calor/terapia , Hipotensão/prevenção & controle , Hipotermia Induzida , Estresse Oxidativo , Função Ventricular , Anestesia Geral , Animais , Antioxidantes/metabolismo , Elasticidade , Traumatismos Cardíacos/fisiopatologia , Ventrículos do Coração/fisiopatologia , Hemodinâmica , Temperatura Alta , Inflamação , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Estimativa de Kaplan-Meier , Masculino , Miocárdio , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo , Função Ventricular Esquerda
10.
J Neuroimmune Pharmacol ; 15(2): 326-339, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31927682

RESUMO

Both brain-derived neurotrophic factor (BDNF) and microglia activation are involved in the pathogenesis of ischemic stroke. Herein, we attempt to ascertain whether Calycosin, an isoflavonoid, protects against ischemic stroke by modulating the endogenous production of BDNF and/or the microglia activation. This study was a prospective, randomized, blinded and placebo-controlled preclinical experiment. Sprague-Dawley adult rats, subjected to transient focal cerebral ischemia by middle cerebral artery occlusion (MCAO), were treated randomly with 0 (corn oil and/or saline as placebo), 30 mg/kg of Calycosin and/or 1 mg/kg of a tropomyosin-related kinase B (TrkB) receptor antagonist (ANA12) at 1 h after reperfusion and once daily for a total of 7 consecutive days. BDNF and its functional receptor, full-length TrkB (TrkB-FL) levels, the percentage of hypertrophic microglia, tumor necrosis factor-α (TNF-α)-containing microglia, and degenerative and apoptotic neurons in ischemic brain regions were determined 7 days after cerebral ischemia. A battery of functional sensorimotor test was performed over 7 days. Post-stroke Calycosin therapy increased the cerebral expression of BDNF/TrkB, ameliorated the neurological injury and switched the microglia from the activated amoeboid state to the resting ramified state in ischemic stroke rats. However, the beneficial effects of BDNF/ TrkB-mediated Calycosin could be reversed by ANA12. Our data indicate that BDNF/TrkB-mediated Calycosin ameliorates rat ischemic stroke injury by switching the microglia from the activated amoeboid state to the resting ramified state. Graphical abstract.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Isoflavonas/uso terapêutico , Microglia/efeitos dos fármacos , Receptor trkB/biossíntese , Acidente Vascular Cerebral/tratamento farmacológico , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Isoflavonas/farmacologia , Masculino , Microglia/metabolismo , Microglia/patologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Fator de Necrose Tumoral alfa/metabolismo
11.
Braz. j. med. biol. res ; 53(7): e8943, 2020. tab, graf
Artigo em Inglês | LILACS, ColecionaSUS | ID: biblio-1132535

RESUMO

This paper reports the development of a three-channel automatic speed-matching climbing training system that could train three rats at the same time for rehabilitation after an ischemic stroke. An infrared (IR) remote sensor was installed at the end of each channel to monitor the real-time position of a climbing rat. This research was carried out in five stages: i) system design; ii) hardware circuit; iii) running speed control; iv) functional testing; and v) verification using an animal model of cerebral stroke. The rehabilitated group significantly outperformed the middle cerebral artery occlusion (MCAo) sedentary group in the rota-rod and inclined plate tests 21 days after a stroke. The rehabilitated group also had a cerebral infarction volume of 28.34±19.4%, far below 56.81±18.12% of the MCAo group 28 days after the stroke, validating the effectiveness of this training platform for stroke rehabilitation. The running speed of the climbing rehabilitation training platform was designed to adapt to the physical conditions of subjects, and overtraining injuries can be completely prevented accordingly.


Assuntos
Animais , Ratos , Isquemia Encefálica/reabilitação , Acidente Vascular Cerebral/terapia , Terapia por Exercício/métodos , Reabilitação do Acidente Vascular Cerebral , Infarto da Artéria Cerebral Média , Modelos Animais de Doenças
12.
J Formos Med Assoc ; 118(12): 1661-1673, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30709695

RESUMO

BACKGROUND & PURPOSE: Following traumatic brain injury (TBI), primary mechanical injury to the brain may cause blood-brain-barrier damage followed by secondary injury, ultimately culminating in cell death. We aimed to test whether one injection of mesenchymal stem cells (MSC) derived from the human umbilical cord can modulate brain cytokine and chemokine gene profiles and attenuate neurological injury in rats with TBI. METHODS: One-day post-TBI, the injured rats were treated with one injection of MSC (4 × 106/rat, i.v.). Three days later, immediately after assessment of neurobehavioral function, animals were sacrificed for analysis of neurological injury (evidenced by both brain contusion volume and neurological deficits) and parietal genes encoding 84 cytokines and chemokines in the injured brain by qPCR methods. RESULTS: Three days post-TBI, rats displayed both neurological injury and upgrade of 11 parietal genes in the ipsilateral brain. One set of 8 parietal genes (e.g., chemokine [C-X-C motif] ligand 12, platelet factor 4, interleukin-7, chemokine [C-C motif] ligand (CCL)19, CCL 22, secreted phosphoprotein 1, pro-platelet basic protein 1, and CCL 2) differentially upgraded by TBI was related to pro-inflammatory and/or neurodegenerative processes. Another set of 3 parietal genes up-graded by TBI (e.g., glucose-6-phosphate isomerase, bone morphogenetic protein (BMP) 2, and BMP 4) was related to anti-inflammatory/neuroregenerative events. Administration of MSC attenuated neurological injury, down-regulated these 8 parietal pro-inflammatory genes, and up-regulated these 3 parietal anti-inflammatory genes in the rats with TBI. CONCLUSION: Our data suggest that modulation of parietal cytokines and chemokines gene profiles by MSC as a basis for neurotrauma recovery.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Quimiocinas/genética , Citocinas/genética , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/genética , Modelos Animais de Doenças , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Transcriptoma , Cordão Umbilical/citologia
13.
Med Sci Monit ; 24: 8096-8104, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30417859

RESUMO

BACKGROUND Several clinical conditions can cause hepatic ischemia/reperfusion (I/R) injury. This study aimed to determine the mechanism of the protective effect of hyperbaric oxygen preconditioning (HBO2P) on hepatic ischemia/reperfusion (I/R) injury in a rat model, and to investigate the effects on HBO2P and I/R injury of blocking HSP70 using antibody (Ab) pretreatment. MATERIAL AND METHODS Male Sprague-Dawley rats underwent HBO2P for 60 min at 2.0 atmosphere absolute (ATA) pressure for five consecutive days before surgical hepatic I/R injury, performed by clamping the portal vein and hepatic lobe. Four groups studied included: the non-HBO2P+ non-I/R group, which underwent sham surgery (N=10); the non-HBO2P + I/R group (N=10); the HBO2P + I/R group (N=10); and the HBO2P + HSP70-Ab + I/R group (N=10) received one dose of HSP70 antibody one day before hepatic I/R injury. Serum lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and hepatic malondialdehyde (MDA) and myeloperoxidase (MPO) were measured biochemically. Rat liver tissues were examined histologically. RESULTS In rats with hepatic I/R injury without HSP70 antibody pre-treatment, HBO2P significantly reduced hepatic injury and levels of LDH, AST, ALT, TNF-α, IL-6, MDA, and MPO levels; in comparison, the group pre-treated with an antibody to inhibit HSP70 (the HBO2P + HSP70-Ab + I/R group) showed significant reversal of the beneficial effects of HBO2P on hepatic I/R injury (p<0.05). CONCLUSIONS In a rat model of hepatic I/R injury with HBO2P, HSP70 reduced hepatic inflammatory and oxidative damage.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Oxigenoterapia Hiperbárica/métodos , Fígado/irrigação sanguínea , Traumatismo por Reperfusão/prevenção & controle , Animais , Aspartato Aminotransferases/sangue , Modelos Animais de Doenças , Imuno-Histoquímica , Interleucina-6/sangue , L-Lactato Desidrogenase/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Hepatopatias/prevenção & controle , Masculino , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Fator de Necrose Tumoral alfa/sangue
14.
Nutrients ; 10(5)2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29702555

RESUMO

Pomegranate (Punica granatum L.) fruit has been demonstrated to have the inhibitory activities to various tumors. In this study, we try to uncover the molecular mechanism underlying the inhibitory capability of Taiwanese local pomegranate fruit to urinary bladder urothelial carcinoma. The results collected from the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated that the ethanol extract of pomegranate peel exhibited better inhibitory activity to human urinary bladder urothelial carcinoma T24 and J82 cells than that of pulp. Furthermore, the ethylacetate layer of peel ethanol extract was observed to have the best inhibitory activity against urinary bladder urothelial carcinoma cells. One of the eight fractions (PEPE2 fraction) collected from the ethylacetate layer with Diaion HP-20 column chromatography demonstrated the highest inhibitory activity in urinary bladder urothelial carcinoma cells. The results of the flow cytometry and apoptotic pathway studies suggested that the inhibitory activity of PEPE2 fraction were attributed to the UBUC cell apoptosis. To confirm the above results, our results of xenograft-induced bladder tumor in nude mice showed that the oral consumption of the ethylacetate layer (2, 5, 10 and 100 mg/kg) could decrease the volume and weight of T24 tumors and caused the apoptosis in the xenografted tumors, which was observed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling assay. This study provided the likelihood that the traditionally non-edible pomegranate peel waste is re-utilized to make an affordable and promising chemopreventive product to prevent UBUC incidence or recurrence.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma/tratamento farmacológico , Lythraceae , Extratos Vegetais/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Urotélio/efeitos dos fármacos , Acetatos/química , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Carcinoma/metabolismo , Carcinoma/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Frutas , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Fitoterapia , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Solventes/química , Taiwan , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Urotélio/metabolismo , Urotélio/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Pharm Pharmacol ; 70(6): 760-767, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29484657

RESUMO

OBJECTIVES: This study aimed to investigate the cardioprotective effects of melatonin on heat stroke (HS) induced acute myocardial infarction in rats and to explore the underlying mechanisms. METHODS: Myocardial injury was induced by subjecting the anaesthetized rats to a high ambient temperature of 43°C for 70 min. Such a high ambient temperature caused hyperthermia, hypotension and myocardial injury in rats. Rats were treated with melatonin (3 mg/kg) intravenously one hour before and followed by an additional dose immediately after heat stress. KEY FINDINGS: At the onset of HS, animals displayed myocardial injury evidenced by increased levels of cardiac damage indicators (e.g. total lactate dehydrogenase, cardiac troponin I and creatine kinase-MB), increased cardiac damage scores and suppressed left ventricular performance. Animals with HS also had increased cardiac oxidative stress evidenced by increased levels of lipid peroxidation (e.g. increased thiobarbituric acid reactive substances) and decreased levels of antioxidant enzymes (e.g. superoxide dismutase, catalase and reduced glutathione) and activated inflammation (e.g. increased levels of interleukin-6 and tumour necrosis factor-α). Pretreatment with melatonin significantly reversed the HS-induced myocardial injury, cardiac oxidative stress and cardiac inflammation. CONCLUSIONS: Melatonin may protect against HS-induced myocardial injury in male rats by mitigating oxidative stress and inflammation.


Assuntos
Golpe de Calor/complicações , Melatonina/farmacologia , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/prevenção & controle , Animais , Cardiotônicos/farmacologia , Inflamação/prevenção & controle , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos
16.
Oncotarget ; 9(2): 1992-2001, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29416747

RESUMO

CD34 is a transmembrane phosphoglycoprotein used to selectively enrich bone marrow in hematopoietic stem cells for transplantation. Treating rats with CD34+ cells derived from human umbilical cord blood before or after heat stroke has been shown to promote survival. We investigated whether CD34- human placenta-derived stem cells (PDMSCs) could improve survival following heat stroke in rats. Rats were subjected to heat stress (42°C for 98 min) to induce heat stroke. Intravenous administration of PDMSCs 1 day before or immediately after the onset of heat stroke improved survival by 60% and 20%, respectively. Pre-treatment with CD34- PDMSCs protected against heat stroke injury more effectively than that treatment after injury. PDMSCs treatment attenuated cerebrovascular dysfunction, the inflammatory response, and lipid peroxidation. These data suggest human PDMSCs protect against heat stroke injury in rats. Moreover, these effects do not require the presence of CD34+ cells.

17.
Int J Med Sci ; 14(13): 1327-1334, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29200946

RESUMO

Background: Clinical assessment reveals that patients after surgery of cardiopulmonary bypass or coronary bypass experience postoperative cognitive dysfunction. This study aimed to investigate whether resuscitation after a hemorrhagic shock (HS) and/or mild cerebral ischemia caused by a unilateral common carotid artery occlusion (UCCAO) can cause brain injury and concomitant neurological dysfunction, and explore the potential mechanisms. Methods: Blood withdrawal (6 mL/100 g body weight) for 60 min through the right jugular vein catheter-induced an HS. Immediately after the termination of HS, we reinfused the initially shed blood volumes to restore and maintain the mean arterial blood pressure (MABP) to the original value during the 30-min resuscitation. A cooling water blanket used to induce whole body cooling for 30 min after the end of resuscitation. Results: An UCCAO caused a slight cerebral ischemia (cerebral blood flow [CBF] 70%) without hypotension (MABP 85 mmHg), systemic inflammation, multiple organs injuries, or neurological injury. An HS caused a moderate cerebral ischemia (52% of the original CBF levels), a moderate hypotension (MABP downed to 22 mmHg), systemic inflammation, and peripheral organs injuries. However, combined an UCCAO and an HS caused a severe cerebral ischemia (18% of the original CBF levels), a moderate hypotension (MABP downed to 17 mmHg), systemic inflammation, peripheral organs damage, and neurological injury, which can be attenuated by whole body cooling. Conclusions: When combined with an HS, an UCCAO is associated with ischemic neuronal injury in the ipsilateral hemisphere of adult rat brain, which can be attenuated by therapeutic hypothermia. A resuscitation from an HS regards as a reperfusion insult which may induce neurological injury in patients with an UCCAO disease.


Assuntos
Lesões Encefálicas/fisiopatologia , Isquemia Encefálica/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Hipotensão/fisiopatologia , Animais , Pressão Sanguínea , Lesões Encefálicas/etiologia , Isquemia Encefálica/complicações , Ponte Cardiopulmonar/efeitos adversos , Artéria Carótida Primitiva/fisiopatologia , Artéria Carótida Primitiva/cirurgia , Circulação Cerebrovascular/fisiologia , Transtornos Cerebrovasculares/complicações , Transtornos Cerebrovasculares/fisiopatologia , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Humanos , Hipotensão/etiologia , Complicações Pós-Operatórias , Ratos , Ressuscitação/efeitos adversos , Choque Hemorrágico/complicações , Choque Hemorrágico/fisiopatologia
18.
J Neuroinflammation ; 14(1): 90, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28438174

RESUMO

BACKGROUND: Despite previous evidence for a potent inflammatory response after a traumatic brain injury (TBI), it is unknown whether exercise preconditioning (EP) improves outcomes after a TBI by modulating inflammatory responses. METHODS: We performed quantitative real-time PCR (qPCR) to quantify the genes encoding 84 cytokines and chemokines in the peripheral blood and used ELISA to determine both the cerebral and blood levels of interleukin-6 (IL-6). We also performed the chromatin immunoprecipitation (ChIP) assay to evaluate the extent of nuclear factor kappa-B (NF-κB) binding to the DNA elements in the IL-6 promoter regions. Also, we adopted the Western blotting assay to measure the cerebral levels of heat shock protein (HSP) 70, synapsin I, and ß-actin. Finally, we performed both histoimmunological and behavioral assessment to measure brain injury and neurological deficits, respectively. RESULTS: We first demonstrated that TBI upregulated nine pro-inflammatory and/or neurodegenerative messenger RNAs (mRNAs) in the peripheral blood such as CXCL10, IL-18, IL-16, Cd-70, Mif, Ppbp, Ltd, Tnfrsf 11b, and Faslg. In addition to causing neurological injuries, TBI also upregulated the following 14 anti-inflammatory and/or neuroregenerative mRNAs in the peripheral blood such as Ccl19, Ccl3, Cxcl19, IL-10, IL-22, IL-6, Bmp6, Ccl22, IL-7, Bmp7, Ccl2, Ccl17, IL-1rn, and Gpi. Second, we observed that EP inhibited both neurological injuries and six pro-inflammatory and/or neurodegenerative genes (Cxcl10, IL-18, IL-16, Cd70, Mif, and Faslg) but potentiated four anti-inflammatory and/or neuroregenerative genes (Bmp6, IL-10, IL-22, and IL-6). Prior depletion of cerebral HSP70 with gene silence significantly reversed the beneficial effects of EP in reducing neurological injuries and altered gene profiles after a TBI. A positive Pearson correlation exists between IL-6 and HSP70 in the peripheral blood or in the cerebral levels. In addition, gene silence of cerebral HSP70 significantly reduced the overexpression of NF-κB, IL-6, and synapsin I in the ipsilateral brain regions after an EP in rats. CONCLUSIONS: TBI causes neurological deficits associated with stimulating several pro-inflammatory gene profiles but inhibiting several anti-inflammatory gene profiles of cytokines and chemokines. Exercise protects against neurological injuries via stimulating an anti-inflammatory HSP70/NF-κB/IL-6/synapsin I axis in the injured brains.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Condicionamento Físico Animal/fisiologia , Sinapsinas/metabolismo , Animais , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/prevenção & controle , Masculino , Condicionamento Físico Animal/métodos , Distribuição Aleatória , Ratos , Ratos Wistar
19.
Cell Transplant ; 26(11): 1798-1810, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29338384

RESUMO

Microglia are the first source of a neuroinflammatory cascade, which seems to be involved in every phase of stroke-related neuronal damage. Two weeks after transient middle cerebral artery occlusion (MCAO), vehicle-treated rats displayed higher numbers of total ionized calcium-binding adaptor molecule 1 (Iba-1)-positive cells, greater cell body areas of Iba-1-positive cells, and higher numbers of hypertrophic Iba-1-positive cells (with a cell body area over 80 µm2) in the ipsilateral ischemic brain regions including the frontal cortex, striatum, and parietal cortex. In addition, MCAO decreased the number of migrating neuroblasts (or DCX- and 5-ethynyl-2'-deoxyuridine-positive cells) in the cortex, subventricular zone, and hippocampus of the ischemic brain, followed by neurological injury (including brain infarct and neurological deficits). Intravenous administration of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs; 1 × 106 or 4 × 106) at 24 h after MCAO reduced neurological injury, decreased the number of hypertrophic microglia/macrophages, and increased the number of newborn neurons in rat brains. Thus, the accumulation of hypertrophic microglia/macrophages seems to be detrimental to neurogenesis after stroke. Treatment with hUC-MSCs preserved adult newborn neurons and reduced functional impairment after transient cerebral ischemia by reducing the number of hypertrophic microglia/macrophages.


Assuntos
Isquemia Encefálica/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco Mesenquimais/citologia , Neurônios/citologia , Cordão Umbilical/citologia , Análise de Variância , Animais , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Proteína Duplacortina , Humanos , Imuno-Histoquímica , Macrófagos/citologia , Macrófagos/fisiologia , Masculino , Células-Tronco Mesenquimais/fisiologia , Microglia/citologia , Microglia/fisiologia , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley
20.
Brain Behav ; 6(10): e00526, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27781140

RESUMO

BACKGROUND: Mesenchymal stem cell (MSC) transplantation has been reported to improve neurological function following neural injury. Many physiological and molecular mechanisms involving MSC therapy-related neuroprotection have been identified. METHODS: A review is presented of articles that pertain to MSC therapy and diverse brain injuries including stroke, neural trauma, and heat stroke, which were identified using an electronic search (e.g., PubMed), emphasize mechanisms of MSC therapy-related neuroprotection. We aim to discuss neuroprotective mechanisms that underlie the beneficial effects of MSCs in treating stroke, neural trauma, and heatstroke. RESULTS: MSC therapy is promising as a means of augmenting brain repair. Cell incorporation into the injured tissue is not a prerequisite for the beneficial effects exerted by MSCs. Paracrine signaling is believed to be the most important mediator of MSC therapy in brain injury. The multiple mechanisms of action of MSCs include enhanced angiogenesis and neurogenesis, immunomodulation, and anti-inflammatory effects. Microglia are the first source of the inflammatory cascade during brain injury. Cytokines, including tumor necrosis factor-α, interleukin-1ß, and interleukin-6, are significantly produced by microglia in the brain after experimental brain injury. The proinflammatory M1 phenotype of microglia is associated with tissue destruction, whereas the anti-inflammatory M2 phenotype of microglia facilitates repair and regeneration. MSC therapy may improve outcomes of ischemic stroke, neural trauma, and heatstroke by inhibiting the activity of M1 phenotype of microglia but augmenting the activity of M2 phenotype of microglia. CONCLUSION: This review offers a testable platform for targeting microglial-mediated cytokines in clinical trials based upon the rational design of MSC therapy in the future. MSCs that are derived from the placenta provide a great choice for stem cell therapy. Although targeting the microglial activation is an important approach to reduce the burden of the injury, it is not the only one. This review focuses on this specific aspect.


Assuntos
Lesões Encefálicas/terapia , Golpe de Calor/terapia , Transplante de Células-Tronco Mesenquimais , Neuroproteção/fisiologia , Acidente Vascular Cerebral/terapia , Animais , Lesões Encefálicas/fisiopatologia , Golpe de Calor/fisiopatologia , Humanos , Células-Tronco Mesenquimais/fisiologia , Acidente Vascular Cerebral/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA