Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Cells ; 12(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36766811

RESUMO

Allergy is a chronic inflammatory disease, and its incidence has increased worldwide in recent years. Thalidomide, which was initially used as an anti-emetic drug but was withdrawn due to its teratogenic effects, is now used to treat blood cancers. Although the anti-inflammatory and immunomodulatory properties of thalidomide have been reported, little is known about its influence on the mast cell-mediated allergic reaction. In the present study, we aimed to evaluate the anti-allergic activity of thalidomide and the underlying mechanism using mouse bone marrow-derived mast cells (BMMCs) and passive cutaneous anaphylaxis (PCA) mouse models. Thalidomide markedly decreased the degranulation and release of lipid mediators and cytokines in IgE/Ag-stimulated BMMCs, with concurrent inhibition of FcεRI-mediated positive signaling pathways including Syk and activation of negative signaling pathways including AMP-activated protein kinase (AMPK) and SH2 tyrosine phosphatase-1 (SHP-1). The knockdown of AMPK or SHP-1 with specific siRNA diminished the inhibitory effects of thalidomide on BMMC activation. By contrast, the knockdown of cereblon (CRBN), which is the primary target protein of thalidomide, augmented the effects of thalidomide. Thalidomide reduced the interactions of CRBN with Syk and AMPK promoted by FcεRI crosslinking, thereby relieving the suppression of AMPK signaling and suppressing Syk signaling. Furthermore, oral thalidomide treatment suppressed the PCA reaction in mice. In conclusion, thalidomide suppresses FcεRI-mediated mast cell activation by activating the AMPK and SHP-1 pathways and antagonizing the action of CRBN, indicating that it is a potential anti-allergic agent.


Assuntos
Proteínas Quinases Ativadas por AMP , Hipersensibilidade , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Hipersensibilidade/metabolismo , Mastócitos/metabolismo , Receptores de IgE/metabolismo , Transdução de Sinais , Talidomida/farmacologia , Talidomida/uso terapêutico
2.
Int Immunopharmacol ; 74: 105702, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31228819

RESUMO

Sauchinone, the biologically active lignan of Saururus chinensis, has been reported to have anti-inflammatory, antitumor, antioxidant, and hepatoprotective properties. However, little is known about the effect of sauchinone on FcεRI-mediated mast cell activation. The aim of this study was to evaluate the anti-allergic activity of sauchinone and the underlying mechanism using mouse bone marrow-derived mast cells (BMMCs) and the mast cell-mediated passive cutaneous anaphylaxis (PCA) model. Sauchinone markedly suppressed FcεRI-mediated activation of positive signaling mediators, including Syk, linker for activation of T cells (LAT), phospholipase C (PLC)γ, mitogen-activated protein (MAP) kinases, Akt, IκB kinase (IKK), and intracellular Ca2+, and increased the activation of negative signaling mediators, including liver kinase B (LKB)1/AMP-activated protein kinase (AMPK) and Src homology 2 domain-containing protein tyrosine phosphatase (SHP)-1. Interestingly, sauchinone increased the interaction between SHP-1 and Syk. Consequently, sauchinone significantly suppressed FcεRI-mediated BMMC degranulation and synthesis of eicosanoids and cytokines. These inhibitory effects of sauchinone were diminished in BMMCs treated with siRNAs targeting LKB1, AMPKα2, or SHP-1, and in BMMCs isolated from AMPKα2-deficient mice. In addition, administration of sauchinone markedly suppressed the IgE-mediated PCA reaction in wild-type mice, and this inhibitory effect was significantly reduced in AMPKα2-/- mice. Taken together, these data suggest that sauchinone suppresses FcεRI-mediated mast cell activation and anaphylaxis through modulation of the LKB1/AMPK and SHP-1/Syk pathways. Therefore, sauchinone might be a potential therapeutic agent for the treatment of allergic inflammatory diseases.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Anafilaxia/tratamento farmacológico , Hipersensibilidade/tratamento farmacológico , Mastócitos/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Quinase Syk/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de IgG/metabolismo , Transdução de Sinais
3.
Cell Signal ; 59: 85-95, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30905540

RESUMO

Nur77 (NR4A1) plays an important role in various inflammatory responses. Nur77 is rapidly degraded in cells and its protein level is critically controlled. Although few E3 ligases regulating the Nur77 protein have been defined, the deubiquitinase (DUB) responsible for Nur77 stability has not been reported to date. We identified ovarian tumor domain-containing ubiquitin aldehyde binding protein 1 (OTUB1) as a DUB that stabilizes Nur77 by preventing its proteasomal degradation. We found that OTUB1 interacted with Nur77 to deubiquitinate it, thereby stabilizing Nur77 in an Asp88-dependent manner. This suggests that OTUB1 targets Nur77 for deubiquitination via a non-canonical mechanism. Functionally, OTUB1 inhibited TNFα-induced IL-6 production by promoting Nur77 protein stability. OTUB1 modulated the stability of Nur77 as a counterpart of tripartite motif 13 (Trim13). That is, OTUB1 reduced the ubiquitination and degradation of Nur77 potentiated by Trim13. In addition, this DUB also inhibited IL-6 production, which was further amplified by Trim13 in TNFα-induced responses. These findings suggest that OTUB1 is an important regulator of Nur77 stability and plays a role in controlling the inflammatory response.


Assuntos
Cisteína Endopeptidases/fisiologia , Inflamação/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Enzimas Desubiquitinantes , Células HeLa , Humanos , Estabilidade Proteica , Proteólise , Células U937 , Ubiquitinação
4.
FASEB J ; 33(5): 6539-6550, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30807229

RESUMO

As a master regulator for metabolic and energy homeostasis, AMPK controls the activity of metabolic enzymes and transcription factors in response to cellular ATP status. AMPK has been thus recognized as a main target for the regulation of cellular energy metabolism. Here, we report that AMPK can be down-regulated by the cullin-RING ubiquitin E3 ligase 4A (CRL4A) with cereblon (CRBN). CRL4A interacted with AMPK holoenzymes and mediated AMPKα-specific polyubiquitination for its proteasomal degradation through non-K48 polyubiquitin linkages. In the ubiquitination system, CRBN was required for efficient polyubiquitination of AMPKα subunits. Consistently, polyubiquitination of AMPKα subunits was reduced by inhibitors of CRL4A-CRBN. Physiologic function of AMPK down-regulation by CRL4-CRBN was also confirmed using mouse bone marrow-derived mast cells (BMMCs). The inactivation of CRL4A-CRBN in BMMC increased AMPK stability and suppressed secretion of allergic mediators via AMPK activation followed by MAPK inhibition. In addition, CRBN knockout of BMMC also decreased allergic responses in mice. Our results suggest that the CRL4A-CRBN axis could be a target for the regulation of AMPK-dependent responses.-Kwon, E., Li, X., Deng, Y., Chang, H. W., Kim, D. Y. AMPK is down-regulated by the CRL4A-CRBN axis through the polyubiquitination of AMPKα isoforms.


Assuntos
Proteínas Quinases Ativadas por AMP/imunologia , Células da Medula Óssea/imunologia , Regulação para Baixo/imunologia , Mastócitos/imunologia , Transdução de Sinais/imunologia , Complexos Ubiquitina-Proteína Ligase/imunologia , Ubiquitinação/imunologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Células da Medula Óssea/patologia , Células HEK293 , Humanos , Hipersensibilidade/genética , Hipersensibilidade/imunologia , Hipersensibilidade/patologia , Isoenzimas/genética , Isoenzimas/imunologia , Mastócitos/patologia , Camundongos , Camundongos Knockout , Transdução de Sinais/genética , Complexos Ubiquitina-Proteína Ligase/genética , Ubiquitinação/genética
5.
Int Immunopharmacol ; 68: 156-163, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30639961

RESUMO

Natural compound esculentoside B (EsB), (2S,4aR,6aR,6aS,6bR,8aR,9R,10R,11S,12aR,14bS)-11-hydroxy-9-(hydroxymethyl)-2 methoxycarbonyl-2,6a,6b,9,12a-pentamethyl-10-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid with molecular weight of 664.833, isolated from roots of Phytolacca acinosa Roxb has been widely used as a constituent of traditional Chinese medicine (TCM). However, the anti-inflammatory capacity of EsB has not been reported yet. Therefore, the objective of this study was to investigate anti-inflammatory activities of EsB in LPS-treated macrophage RAW 264.7 cells. EsB could inhibit nitric oxide (NO) production. EsB also suppressed gene and protein expression levels of inducible isoform of NO synthase (NOS) and cyclooxygenase-2 in a dose-dependent manner. In addition, EsB decreased gene expression and protein secretion levels of pro-inflammatory cytokines such as IL-1ß, TNF-α, and IL-6. EsB remarkably suppressed nuclear translocation of nuclear factor kappa-B (NF-κB) from cytosolic space. Phosphorylation of IκB was also inhibited by EsB. Moreover, EsB specifically down-regulated phospho-c-Jun N-terminal kinase (p-JNK), but not p-p38 or phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2). Taken together, these results suggest that EsB has inhibitory effect on inflammatory response by inactivating NF-κB and p-JNK. It could be used as a new modulatory drug for effective treatment of inflammation-related diseases.


Assuntos
Anti-Inflamatórios não Esteroides/química , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Saponinas/química , Terpenos/química , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Células RAW 264.7 , Saponinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Terpenos/farmacologia
6.
J Cell Biochem ; 120(6): 9810-9819, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30525244

RESUMO

A water-soluble saponin, Esculentoside H (EsH), 3-O-(O-ß-d-glucopyranosyl-(1→4)-ß-d-xylopyranosyl)-28-ß-d-glucopyranosylphytolaccagenin has been isolated and purified from the root extract of perennial plant Phytolacca esculenta. EsH is known to be an anticancer compound, having a capacity for TNF-α release. However, the effects of EsH on migration and growth in tumor cells have not yet been reported. In the current study, the suppressive effects of EsH on phorbol 12-myristate 13-acetate (PMA)-induced cell migration were examined in murine colon cancer CT26 cells and human colon cancer HCT116 cells. Interestingly, the transwell assay and wound healing show that EsH suppresses the PMA-induced migration and growth potential of HCT116 and CT26 colon cancer cells, respectively. EsH dose-dependently suppressed matrix metalloproteinases-9 (MMP-9) expression that was upregulated upon PMA treatment in messenger RNA levels and protein secretion. Since the expression of MMP-9 is correlated with nuclear factor-κB (NF-κB) signaling, it has been examined whether EsH inhibits PMA-induced IκB phosphorylation that leads to the suppression of NK-κB nuclear translocation. EsH repressed the phosphorylation level of JNK, but not extracellular signal-regulated kinase and p38 signaling when the cells were treated with PMA. Overall, these results demonstrated that EsH could suppress cancer migration through blockage of the JNK1/2 and NF-κB signaling-mediated MMP-9 expression.


Assuntos
Movimento Celular/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 9 da Matriz/biossíntese , NF-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Animais , Neoplasias do Colo , Células HCT116 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ácido Oleanólico/farmacologia
7.
Allergy ; 74(6): 1145-1156, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30565708

RESUMO

BACKGROUND: Nuclear receptor subfamily 4 group A member 1 (NR4A1), an orphan nuclear receptor, has been implicated in several biological events such as metabolism, apoptosis, and inflammation. Recent studies indicate a potential role for NR4A1 in mast cells, yet its role in allergic responses remains largely unknown. OBJECTIVES: The aim of this study was to clarify the role of NR4A1 in mast cell activation and anaphylaxis. METHODS: To evaluate the function of NR4A1 in mast cells, the impacts of siRNA knockdown, gene knockout, adenoviral overexpression, and pharmacological inhibition of NR4A1 on FcεRI signaling and effector functions in mouse bone marrow-derived mast cells (BMMCs) in vitro and on anaphylactic responses in vivo were evaluated. RESULTS: Knockdown or knockout of NR4A1 markedly suppressed degranulation and lipid mediator production by FcεRI-crosslinked BMMCs, while its overexpression augmented these responses. Treatment with a NR4A1 antagonist also blocked mast cell activation to a similar extent as NR4A1 knockdown or knockout. Moreover, mast cell-specific NR4A1-deficient mice displayed dampened anaphylactic responses in vivo. Mechanistically, NR4A1 promoted FcεRI signaling by counteracting the liver kinase B1 (LKB1)/adenosine monophosphate-activated protein kinase (AMPK) axis. Following FcεRI crosslinking, NR4A1 bound to the LKB1/AMPK complex and sequestered it in the nucleus, thereby promoting FcεRI downstream signaling pathways. Silencing or knockout of LKB1/AMPK largely abrogated the effect of NR4A1 on mast cell activation. Additionally, NR4A1 facilitated spleen tyrosine kinase activation independently of LKB1/AMPK. CONCLUSIONS: Nuclear receptor subfamily 4 group A member 1 positively regulates mast cell activation by antagonizing the LKB1-AMPK-dependent negative regulatory axis. This finding may provide a novel therapeutic strategy for the development of anti-allergic compounds.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Anafilaxia/metabolismo , Mastócitos/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de IgE/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Basófilos/metabolismo , Células da Medula Óssea/metabolismo , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/antagonistas & inibidores , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Anafilaxia Cutânea Passiva , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Piridinas/farmacologia
8.
Sci Rep ; 8(1): 13895, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30224829

RESUMO

Nur77 is a member of the NR4A subfamily of nuclear receptors and has been shown to regulate various biological processes such as apoptosis and inflammation. Here, we show that Nur77 ubiquitination is mediated by the tripartite motif 13 (Trim13), a RING-type E3 ubiquitin ligase. The interaction between Nur77 and Trim13 was confirmed by co-immunoprecipitation. Moreover, we found that Lys539 in Nur77 ubiquitination is targeted for Trim13, which leads to Nur77 degradation. The Trim13-mediated ubiquitination of Nur77 was optimal in the presence of the E2 enzyme UbcH5. Importantly, in addition to Trim13-mediated ubiquitination, the stability of Nur77 was also regulated by casein kinase 2α (CK2α). Pharmacological inhibition of CK2 markedly increased Nur77 levels, whereas overexpression of CK2α, but not its inactive mutant, dramatically decreased Nur77 levels by promoting Nur77 ubiquitination. CK2α phosphorylated Ser154 in Nur77 and thereby regulated Nur77 protein levels by promoting its ubiquitin-mediated degradation. Importantly, we also show that degradation of Nur77 is involved in TNFα-mediated IL-6 production via CK2α and Trim13. Taken together, these results suggest that the sequential phosphorylation and ubiquitination of Nur77 controls its degradation, and provide a therapeutic approach for regulating Nur77 activity through the CK2α-Trim13 axis as a mechanism to control the inflammatory response.


Assuntos
Caseína Quinase II/metabolismo , Proteínas de Ligação a DNA/fisiologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Humanos , Interleucina-6/biossíntese , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/química , Fosforilação , Ligação Proteica , Estabilidade Proteica , Proteólise , Serina/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitinação
9.
Oncotarget ; 8(38): 63949-63962, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28969043

RESUMO

Isothiocyanates, which are present as glucosinolate precursors in cruciferous vegetables, have strong activity against various cancers. Here, we compared the anti-metastatic effects of isothiocyanates (benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC), and sulforaphane (SFN)) by examining how they regulate MMP-9 expression. Isothiocyanates, particularly PEITC, suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP-9 activity and invasion in various cancer cell lines. By contrast, N-methyl phenethylamine, a PEITC analog without an isothiocyanate functional group, had no effect. A reporter gene assay demonstrated that BITC, PEITC, and SFN suppressed TAP-induced MMP-9 expression by inhibiting AP-1 and NF-κB in U20S osteosarcoma cells. All three compounds reduced phosphorylation of FAK, ERK1/2, and Akt. In addition, MMP-9 expression was downregulated by inhibiting FAK, ERK1/2, and Akt. Isothiocyanates-mediated inhibition of FAK phosphorylation suppressed phosphorylation of ERK1/2 and Akt in U2OS and A549 cells, along with the translocation of p65 and c-Fos, suggesting that isothiocyanates inhibit MMP-9 expression and cell invasion by blocking phosphorylation of FAK. Furthermore, isothiocyanates, abolished MMP-9 expression and tumor metastasis in vivo with the following efficacy: PEITC>BITC>SFN. Thus, isothiocyanates act as anti-metastatic compounds that suppress MMP-9 activity/expression by inhibiting NF-κB and AP-1 via suppression of the FAK/ERK and FAK/Akt signaling pathways.

10.
Oncotarget ; 8(42): 72205-72219, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-29069780

RESUMO

The disialic acid-containing glycosphingolipid GD3 recruited membrane transglutaminase 2 (TG2) as a signaling molecule for erythroid differentiation in human chronic myelogenous leukemia (CML) K562 cells. The α1-adrenergic receptor (α1-AR)/TG2-mediated signaling pathway regulated GD3 functions, including gene expression and production, to differentiate CML K562 cells into erythroid lineage cells. Epinephrine, an AR agonist, increased membrane recruitment as well as GTP-photoaffinity of TG2, inducing GD3 synthase gene expression. Epinephrine activated PI3K/Akt signaling and GTPase downstream of TG2 activated Akt. The coupling of TG2 and GD3 production was specifically suppressed by prazosin (α1-AR antagonist), but not by propranolol (ß-AR antagonist) or rauwolscine (α2-AR antagonist), indicating α1-AR specificity. Small interfering RNA (siRNA) experiment results indicated that the α1-AR/TG2-mediated signaling pathway activated PKCs α and δ to induce GD3 synthase gene expression. Transcription factors CREB, AP-1, and NF-κB regulated GD3 synthase gene expression during α1-AR-induced differentiation in CML K562 cells. In addition, GD3 synthase gene expression was upregulated in TG2-transfected cells via α1-AR with expression of erythroid lineage markers and benzidine-positive staining. α1-AR/TG2 signaling pathway-directed GD3 production is a crucial step in erythroid differentiation of K562 cells and GD3 interacts with α1-AR/TG2, inducing GD3/α1-AR/TG2-mediated erythroid differentiation. These results suggest that GD3, which acts as a membrane mediator of erythroid differentiation in CML cells, provides a therapeutic avenue for leukemia treatment.

11.
PLoS One ; 12(8): e0182382, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28763516

RESUMO

Cytosine deamination induced by stresses or enzymatic catalysis converts deoxycytidine into deoxyuridine, thereby introducing a G to A mutation after DNA replication. Base-excision repair to correct uracil to cytosine is initiated by uracil-DNA glycosylase (UDG), which recognizes and eliminates uracil from DNA. Mimivirus, one of the largest known viruses, also encodes a distinctive UDG gene containing a long N-terminal domain (N-domain; residues 1-130) and a motif-I (residues 327-343), in addition to the canonical catalytic domain of family I UDGs (also called UNGs). To understand the structural and functional features of the additional segments, we have determined the crystal structure of UNG from Acanthamoeba polyphaga mimivirus (mvUNG). In the crystal structure of mvUNG, residues 95-130 in the N-domain bind to a hydrophobic groove in the catalytic domain, and motif-I forms a short ß-sheet with a positively charged surface near the active site. Circular dichroism spectra showed that residues 1-94 are in a random coil conformation. Deletion of the three additional fragments reduced the activity and thermal stability, compared to full-length mvUNG. The results suggested that the mvUNG N-domain and motif-I are required for its structural and functional integrity.


Assuntos
Mimiviridae/enzimologia , Uracila-DNA Glicosidase/química , Acanthamoeba/virologia , Motivos de Aminoácidos , Domínio Catalítico , Dicroísmo Circular , Cristalografia por Raios X , DNA/química , Reparo do DNA , Deleção de Genes , Mimiviridae/genética , N-Glicosil Hidrolases/química , Estrutura Secundária de Proteína , Coloração pela Prata , Especificidade por Substrato , Uracila/química
12.
Free Radic Biol Med ; 106: 196-207, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28216386

RESUMO

Adherent-invasive E. coli colonization and Toll-like receptor (TLR) expression are increased in the gut of inflammatory bowel disease (IBD) patients. However, the underlying mechanism of such changes has not been determined. In the current study, it was examined whether gut serotonin (5-hydroxytryptamine, 5-HT) can induce adherent-invasive E. coli colonization and increase TLR expression. In a co-culture system, commensal E. coli strain (BW25113, BW) adhered minimally to colon epithelial cells, but this was significantly enhanced by 5-HT to the level of a pathogenic strain (EDL933). Without inducing bacterial virulence, such as, biofilm formation, 5-HT enhanced BW-induced signaling in colon epithelial cells, that is, NADPH oxidase (NOX)-dependent superoxide production, the up-regulations of IL-8, TLR2, TLR4, and ICAM-1, and the down-regulations of E-cadherin and claudin-2. In a manner commensurate with these gene modulations, BW induced an increase in NF-κB and a decrease in GATA reporter signals in colon epithelial cells. However, 5-HT-enhanced BW adhesion and colon epithelial responses were blocked by knock-down of NOX2, TLR2, or TLR4. In normal mice, 5-HT induced the invasion of BW into gut submucosa, and the observed molecular changes were similar to those observed in vitro, except for significant increases in TNFα and IL-1ß, and resulted in death. In dextran sulfate sodium-induced colitis mice (an IBD disease model), in which colonic 5-HT levels were markedly elevated, BW administration induced death in along with large amount of BW invasion into colon submucosa, and time to death was negatively related to the amount of BW injected. Taken together, our results demonstrate that 5-HT induces the invasion of commensal E. coli into gut submucosa by amplifying commensal bacteria-induced epithelial signaling (superoxide production and the inductions of NOX2 and TLR2/TLR4). The authors suggest that these changes may constitute the molecular basis for the pathogenesis of IBD.


Assuntos
Doenças Inflamatórias Intestinais/metabolismo , NADPH Oxidase 2/genética , Serotonina/metabolismo , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Animais , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/patologia , Camundongos , NADPH Oxidase 2/metabolismo , Serotonina/farmacologia , Superóxidos/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
13.
PeerJ ; 5: e2895, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28133573

RESUMO

Jellyfish species are widely distributed in the world's oceans, and their population is rapidly increasing. Jellyfish extracts have several biological functions, such as cytotoxic, anti-microbial, and antioxidant activities in cells and organisms. However, the anti-cancer effect of Jellyfish extract has not yet been examined. We used chronic myelogenous leukemia K562 cells to evaluate the mechanisms of anti-cancer activity of hexane extracts from Nomura's jellyfish in vitro. In this study, jellyfish are subjected to hexane extraction, and the extract is shown to have an anticancer effect on chronic myelogenous leukemia K562 cells. Interestingly, the present results show that jellyfish hexane extract (Jellyfish-HE) induces apoptosis in a dose- and time-dependent manner. To identify the mechanism(s) underlying Jellyfish-HE-induced apoptosis in K562 cells, we examined the effects of Jellyfish-HE on activation of caspase and mitogen-activated protein kinases (MAPKs), which are responsible for cell cycle progression. Induction of apoptosis by Jellyfish-HE occurred through the activation of caspases-3,-8 and -9 and phosphorylation of p38. Jellyfish-HE-induced apoptosis was blocked by a caspase inhibitor, Z-VAD. Moreover, during apoptosis in K562 cells, p38 MAPK was inhibited by pretreatment with SB203580, an inhibitor of p38. SB203580 blocked jellyfish-HE-induced apoptosis. Additionally, Jellyfish-HE markedly arrests the cell cycle in the G0/G1 phase. Therefore, taken together, the results imply that the anti-cancer activity of Jellyfish-HE may be mediated apoptosis by induction of caspases and activation of MAPK, especially phosphorylation of p38, and cell cycle arrest at the Go/G1 phase in K562 cells.

14.
Biomaterials ; 112: 192-203, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27768973

RESUMO

The inability to monitor the in vivo dynamics of mast cells (MCs) limits the better understanding of its role in cancer progression. Here, we report on noninvasive imaging of MC migration to tumor lesions in mice and evaluation of the effects of migrated MCs on tumor progression through reporter gene-based in vivo optical imaging and glucose metabolism monitoring in cancer with 18F-fluorodeoxyglucose (18F-FDG) in vitro and in vivo. Murine MCs (MC-9) and Lewis lung cancer cells (LLC) expressing an enhanced firefly luciferase (effluc) gene were established, termed MC-9/effluc and LLC/effluc, respectively. MC-9/effluc cell migration to LLC tumor lesions was initially detected within 1 h post-transfer and distinct bioluminescence imaging signals emitted from MC-9/effluc cells were observed at tumor sites until 96 h. In vivo optical imaging as well as a biodistribution study with 18F-FDG demonstrated more rapid tumor growth and upregulated glucose uptake potentially associated with MC migration to tumor lesions. These results suggest that the combination of a reporter gene-based optical imaging approach and glucose metabolism status monitoring with 18F-FDG represents a promising tool to better understand the biological role of MCs in tumor microenvironments and to develop new therapeutic drugs to regulate their involvement in enhanced tumor growth.


Assuntos
Rastreamento de Células/métodos , Glucose/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mastócitos/metabolismo , Mastócitos/patologia , Microscopia de Fluorescência/métodos , Animais , Linhagem Celular Tumoral , Feminino , Genes Reporter/genética , Camundongos , Camundongos Endogâmicos C57BL , Imagem Molecular/métodos , Invasividade Neoplásica
15.
J Ethnopharmacol ; 195: 309-317, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27876502

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Oldenlandia diffusa (OD) has long been known as an apoptotic inducer in breast tumors in ethnomedicine. AIM OF THE STUDY: To scientifically confirm the anti-breast cancer effects of water, methanol (MeOH) and butanol (BuOH) extracts of O. diffusa on cell apoptosis, matrix metalloproteinases (MMPs), intercellular adhesion molecule (ICAM)-1 and intracellular signaling in MCF-7 breast cancer cells. MATERIALS AND METHODS: MeOH extracts (MOD) and BuOH extracts (BOD) were prepared and examined for their ability to inhibit phorbol myristate acetate (PMA)-induced matrix metalloproteinase (MMP)-9 and intercellular adhesion molecule (ICAM)-1 expressions in MCF-7 human breast cancer cells. Additionally, transwell migration, invasion and transcriptional activity were assessed. Results of immunofluorescence confocal microscopy for translocation of NF-κB and p-ERK and p-p38 were also checked. Finally, apoptotic signals including processed caspase-8, caspase-7, poly ADP-ribose polymerase, Bax and Bcl-2 were examined. RESULTS: MOD and BOD specifically inhibited PMA-induced MMP-9 expression as well as invasive and migration potential via ICAM-1. The inhibitory activity was also based on the suppressed transcriptional activity in MCF-7 breast cancer cells. Results of immunofluorescence confocal microscopy showed that translocation of NF-κB decreased upon BOD and MOD treatments, with a decreased level of p-ERK and p-p38 phosphorylation. In addition, treatment of MCF-7 cells with MOD and BOD activated apoptosis-linked proteins including enzymatically active forms of processed caspase-8, caspase-7 and poly ADP-ribose polymerase, together with increased expression of mitochondrial apoptotic protein, Bax and decreased expression of Bcl-2. CONCLUSION: The results indicate that OD as an anti-metastatic agent suppresses the metastatic response by targeting p-ERK, p-38 and NF-κB, thus reducing the invasion capacity of MCF-7 breast cancer cells through inhibition of MMP-9 and ICAM-1 expression and plays an important role in the regulation of breast cancer cell apoptosis.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oldenlandia/química , Extratos Vegetais/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Antineoplásicos Fitogênicos/isolamento & purificação , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Butanóis/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ativação Enzimática , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Molécula 1 de Adesão Intercelular/genética , Células MCF-7 , Metanol/química , NF-kappa B/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Fosforilação , Fitoterapia , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Transfecção , Água/química
16.
Oncol Rep ; 37(2): 777-784, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27959445

RESUMO

Delphinidin, a polyphenol that belongs to the group of anthocyanidins and is abundant in many pigmented fruits and vegetables, possesses important antioxidant, anti­inflammatory, anti-mutagenic and anticancer properties. In the present study, we investigated the inhibitory effects of delphinidin on vascular endothelial growth factor (VEGF) expression, an important factor involved in angiogenesis and tumor progression, in A549 human lung cancer cells. Delphinidin inhibited CoCl2- and epidermal growth factor (EGF)-induced VEGF mRNA expression and VEGF protein production. Delphinidin also decreased CoCl2- and EGF-stimulated expression of hypoxia­inducible factor (HIF)­1α, which is a transcription factor of VEGF. Delphinidin suppressed CoCl2- and EGF-induced hypoxia­response element (HRE) promoter activity, suggesting that the inhibitory effects of delphinidin on VEGF expression are caused by the suppression of the binding of HIF-1 to the HRE promoter. We also found that delphinidin specifically decreased the CoCl2- and EGF-induced HIF-1α protein expression by blocking the ERK and PI3K/Akt/mTOR/p70S6K signaling pathways, whereas the p38-mediated pathways were not involved. In animal models, EGF-induced new blood vessel formation was significantly inhibited by delphinidin. Therefore, our results indicate that delphinidin has a potentially new role in anti­angiogenic action by inhibiting HIF-1α and VEGF expression.


Assuntos
Antocianinas/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Neoplasias Pulmonares/irrigação sanguínea , Neovascularização Patológica/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores da Angiogênese , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Int J Mol Sci ; 17(5)2016 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-27144558

RESUMO

Gangliosides have been known to play a role in the regulation of apoptosis in cancer cells. This study has employed disialyl-ganglioside GD1b to apoptosis in human breast cancer MCF-7 cells using exogenous treatment of the cells with GD1b and endogenous expression of GD1b in MCF-7 cells. First, apoptosis in MCF-7 cells was observed after treatment of GD1b. Treatment of MCF-7 cells with GD1b reduced cell growth rates in a dose and time dependent manner during GD1b treatment, as determined by XTT assay. Among the various gangliosides, GD1b specifically induced apoptosis of the MCF-7 cells. Flow cytometry and immunofluorescence assays showed that GD1b specifically induces apoptosis in the MCF-7 cells with Annexin V binding for apoptotic actions in early stage and propidium iodide (PI) staining the nucleus of the MCF-7 cells. Treatment of MCF-7 cells with GD1b activated apoptotic molecules such as processed forms of caspase-8, -7 and PARP (Poly(ADP-ribose) polymerase), without any change in the expression of mitochondria-mediated apoptosis molecules such as Bax and Bcl-2. Second, to investigate the effect of endogenously produced GD1b on the regulation of cell function, UDP-gal: ß1,3-galactosyltransferase-2 (GD1b synthase, Gal-T2) gene has been transfected into the MCF-7 cells. Using the GD1b synthase-transfectants, apoptosis-related signal proteins linked to phenotype changes were examined. Similar to the exogenous GD1b treatment, the cell growth of the GD1b synthase gene-transfectants was significantly suppressed compared with the vector-transfectant cell lines and transfection activated the apoptotic molecules such as processed forms of caspase-8, -7 and PARP, but not the levels of expression of Bax and Bcl-2. GD1b-induced apoptosis was blocked by caspase inhibitor, Z-VAD. Therefore, taken together, it was concluded that GD1b could play an important role in the regulation of breast cancer apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Gangliosídeos/toxicidade , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caspase 7/metabolismo , Caspase 8/metabolismo , Inibidores de Caspase/farmacologia , Feminino , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Gangliosídeos/biossíntese , Humanos , Células MCF-7 , Microscopia de Fluorescência , Oligopeptídeos/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
18.
Chem Pharm Bull (Tokyo) ; 64(3): 276-81, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26936053

RESUMO

Fourteen compounds were isolated from the flowers of Inula japonica THUNB. (Asteraceae), including two new compounds, (1S,2S,4S,5S,8S,10R)-2-acetoxy-4,3-dihydroxy-pseudoguai-7(11)-en-12,8-olide (1) and (1S,2S,4S,5S,8S,10R)-2,4,13-trihydroxy-pseudoguai-7(11)-en-12,8-olide (2), and twelve known compounds, budlein B (3), 6ß-hydroxytomentosin (4), 6-deacetoxybritanin (5), 4-epipulchellin (6), britanin (7), tomentosin (8), (+)-dihydroquercetin (9), (-)-syringaresinol (10), quercetagetin 3,4'-dimethyl ether (11), luteolin (12), britanin G (13) and inuchinenolide C (14). Structures of 1 and 2 were determined based on one and two dimensional (1D)- and (2D)-NMR data and Mosher's esterification method. Compounds 9 and 12 showed inhibitory activities toward DNA topoisomerase I with IC50 values of 55.7 and 37.0 µM, respectively, compared to camptothecin (CPT) with an IC50 of 24.5 µM. Compounds 7-9 and 11-14 exhibited more potent inhibitory activity against topoisomerases II with IC50 values of 6.9, 3.8, 3.0, 6.9, 10.0, 14.7 and 13.8 µM, respectively, than that of etoposide (VP-16) with an IC50 of 26.9 µM. Compounds 4-7 and 10-14 exhibited weak cytotoxicities to the selected cancer cell lines.


Assuntos
Flores/química , Inula/química , Inibidores da Topoisomerase/farmacologia , Linhagem Celular Tumoral , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas de Bombardeamento Rápido de Átomos , Inibidores da Topoisomerase/química
19.
Food Sci Biotechnol ; 25(6): 1693-1700, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-30263464

RESUMO

Emodin, one of the major compounds in the herb Reynoutria elliptica, is known to maintain immunosuppressive, anti-allergic, anti-cancer, and anti-inflammatory effects. In this study, we assessed the possibility of using emodin to induce apoptosis in stimulated immune cells in vitro. After treatment with emodin and concanavalin A (Con A), we observed DNA damage-induced apoptosis in splenocytes. Moreover, treatment with emodin and Con A increased the number of apoptotic splenocytes compared with untreated controls. Emodin also diminished the size of CD45R/B220+ cells, CD19+CD69+ cells, and cDC populations. These results indicate that emodin-induced apoptosis was involved in attenuating the immune activity promoted by DNA damage and in decreasing the number of CD45R/B220+ B cells and CD19+CD69+ activating B cells. This demonstration of emodin inducing apoptosis of Con A-stimulated immune cells indicates its potential utility as a therapy for diseases caused by abnormally activated immune cells.

20.
J Cell Biochem ; 117(4): 978-87, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26399466

RESUMO

A natural compound C23 H32 O4 Cl, ascochlorin (ASC) isolated from an incomplete fungus, Ascochyta viciae has been known to have several biological activities as an antibiotic, antifungal, anti-cancer, anti-hypolipidemic, and anti-hypertension agent. In this study, anti-inflammatory activity has been investigated in lipopolysaccharide (LPS)-induced murine macrophage RAW 264.7 cells, since ASC has not been observed on the inflammatory events. The present study has clearly shown that ASC (1-50 µM) significantly suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2 ) and decreased the gene expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose-dependent manner. Moreover, ASC inhibited the mRNA expression and the protein secretion of interleukin (IL)-1ß and IL-6 but not tumor necrosis factor (TNF)-α in LPS-stimulated RAW 264.7 macrophage cells. In addition, ASC suppressed nuclear translocation and DNA binding affinity of nuclear factor-κB (NF-κB). Furthermore, ASC down-regulated phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2) and p-p38. These results demonstrate that ASC exhibits anti-inflammatory effects in RAW 264.7 macrophage cells.


Assuntos
Alcenos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Ciclo-Oxigenase 2/genética , Lipopolissacarídeos/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Fenóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Alcenos/isolamento & purificação , Animais , Anti-Inflamatórios não Esteroides/isolamento & purificação , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/antagonistas & inibidores , Dinoprostona/biossíntese , Regulação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fenóis/isolamento & purificação , Transporte Proteico , Saccharomycetales/química , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA