Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 213(5): 753-762, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38995175

RESUMO

The role of ICOS in antitumor T cell responses and overall tumor progression has been controversial. In this study, we compared tumor progression in mice lacking ICOS selectively in regulatory T (Treg) cells or in all T cells. Using an experimental melanoma lung metastasis model, we found that Treg cell-specific ICOS knockout reduces the overall tumor burden compared with Cre control mice, with increased CD4+-to-Treg cell and CD8+-to-Treg cell ratios in the tumor. In contrast, there was no difference in the tumor burden in mice lacking ICOS in all of the T cell compartments. This suggests a dual role of ICOS costimulation in promoting protumor and antitumor T cell responses. Consistent with reduced tumor burden, we found that Treg cell-specific deletion of ICOS leads to an increase of CD8+ CTLs that express high levels of granzyme B and perforin. Moreover, single-cell transcriptome analysis revealed an increase of Ly108+Eomeshi CD8+ T cells at the cost of the Ly108+T-bethi subset in Treg cell-specific knockout mice. These results suggest that ICOS-expressing Treg cells suppress the CTL maturation process at the level of Eomes upregulation, a critical step known to drive perforin expression and cytotoxicity. Collectively, our data imply that cancer immunotherapies using ICOS agonist Abs may work better in Treg cell-low tumors or when they are combined with regimens that deplete tumor-infiltrating Treg cells.


Assuntos
Proteína Coestimuladora de Linfócitos T Induzíveis , Melanoma Experimental , Camundongos Knockout , Linfócitos T Citotóxicos , Linfócitos T Reguladores , Animais , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Linfócitos T Reguladores/imunologia , Camundongos , Linfócitos T Citotóxicos/imunologia , Melanoma Experimental/imunologia , Perforina/metabolismo , Camundongos Endogâmicos C57BL , Granzimas/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Proteínas Citotóxicas Formadoras de Poros
2.
Immune Netw ; 20(5): e36, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33163244

RESUMO

Hippo signaling pathways are evolutionarily conserved signal transduction mechanisms mainly involved in organ size control, tissue regeneration, and tumor suppression. However, in mammals, the primary role of Hippo signaling seems to be regulation of immunity. As such, humans with null mutations in STK4 (mammalian homologue of Drosophila Hippo; also known as MST1) suffer from recurrent infections and autoimmune symptoms. Although dysregulated T cell homeostasis and functions have been identified in MST1-deficient human patients and mouse models, detailed cellular and molecular bases of the immune dysfunction remain to be elucidated. Although the canonical Hippo signaling pathway involves transcriptional co-activator Yes-associated protein (YAP) or transcriptional coactivator with PDZ motif (TAZ), the major Hippo downstream signaling pathways in T cells are YAP/TAZ-independent and they widely differ between T cell subsets. Here we will review Hippo signaling mechanisms in T cell immunity and describe their implications for immune defects found in MST1-deficient patients and animals. Further, we propose that mutual inhibition of Mst and Akt kinases and their opposing roles on the stability and function of forkhead box O and ß-catenin may explain various immune defects discovered in mutant mice lacking Hippo signaling components. Understanding these diverse Hippo signaling pathways and their interplay with other evolutionarily-conserved signaling components in T cells may uncover molecular targets relevant to vaccination, autoimmune diseases, and cancer immunotherapies.

3.
Blood Adv ; 4(5): 868-879, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32130407

RESUMO

Angioimmunoblastic T-cell lymphoma (AITL) is an aggressive peripheral T-cell lymphoma driven by a pool of neoplastic cells originating from T follicular helper (Tfh) cells and concomitant expansion of B cells. Conventional chemotherapies for AITL have shown limited efficacy, and as such, there is a need for improved therapeutic options. Because AITL originates from Tfh cells, we hypothesized that AITL tumors continue to rely on essential Tfh components and intimate T-cell-B-cell (T-B) interactions. Using a spontaneous AITL mouse model (Roquinsan/+ mice), we found that acute loss of Bcl6 activity in growing tumors drastically reduced tumor size, demonstrating that AITL-like tumors critically depend on the Tfh lineage-defining transcription factor Bcl6. Because Bcl6 can upregulate expression of signaling lymphocytic activation molecule-associated protein (SAP), which is known to promote T-B conjugation, we next targeted the SAP-encoding Sh2d1a gene. We observed that Sh2d1a deletion from CD4+ T cells in fully developed tumors also led to tumor regression. Further, we provide evidence that tumor progression depends on T-B cross talk facilitated by SAP and high-affinity LFA-1. In our study, AITL-like tumors relied heavily on molecular pathways that support Tfh cell identity and T-B collaboration, revealing potential therapeutic targets for AITL.


Assuntos
Linfadenopatia Imunoblástica , Linfoma de Células T Periférico , Animais , Camundongos , Linfócitos T Auxiliares-Indutores , Fatores de Transcrição
4.
Immunol Rev ; 291(1): 91-103, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31402504

RESUMO

Human patients with homozygous null mutations in the ICOS gene suffer from recurrent infections due to humoral immune defects. Studies on human patients and mouse models have shown that inducible T-cell co-stimulator (ICOS)-deficient individuals cannot form T follicular helper (Tfh) cells, a group of CD4 T cells that migrate into B cell follicles and facilitate germinal center (GC) reactions. ICOS-induced phosphoinositide 3-kinase signaling pathways have been shown to play critical roles in Tfh programming, migration of Tfh cells into the GC, and delivery of T cell help during Tfh-GC B cell conjugation. These processes are also assisted by ICOS-mediated intracellular calcium mobilization and TANK-binding kinase 1 signaling. However, ICOS signaling also has stimulatory roles in T regulatory cells and innate lymphoid cells (ILCs), providing another layer of complexity. In this review, we discuss cell-type-specific signaling mechanisms utilized by ICOS in Tfh cells, T regulatory cells, and ILCs. Whenever relevant, we compare the roles and signaling pathways of ICOS and CD28. Understanding ICOS signal transduction mechanisms used by distinct immune subsets at different stages of immune responses or disease progression may help improve vaccination protocols, treat autoimmune diseases, and enhance cancer immunotherapy.


Assuntos
Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Ativação Linfocitária/imunologia , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Homeostase , Humanos , Imunoterapia , Ligantes , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/terapia
5.
Front Immunol ; 9: 1461, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29988391

RESUMO

The incidence of chronic graft-versus-host disease (cGVHD) is on the rise and still the major cause of morbidity and mortality among patients after allogeneic hematopoietic stem cell transplantation (HCT). Both donor T and B cells contribute to the pathogenesis of cGVHD. Inducible T-cell co-stimulator (ICOS), a potent co-stimulatory receptor, plays a key role in T-cell activation and differentiation. Yet, how ICOS regulates the development of cGVHD is not well understood. Here, we investigated the role of ICOS in cGVHD pathogenesis using mice with germline or regulatory T cell (Treg)-specific ICOS deficiency. The recipients of ICOS-/- donor grafts had reduced cGVHD compared with wild-type controls. In recipients of ICOS-/- donor grafts, we observed significant reductions in donor T follicular helper (Tfh), Th17, germinal center B-cell, and plasma cell differentiation, coupled with lower antibody production. Interestingly, Tregs, including follicular regulatory T (Tfr) cells, were also impaired in the absence of ICOS. Using ICOS conditional knockout specific for Foxp3+ cells, we found that ICOS was indispensable for optimal survival and homeostasis of induced Tregs during cGVHD. Furthermore, administration of anti-ICOS alleviated cGVHD severity via suppressing T effector cells without affecting Treg generation. Taken together, ICOS promotes T- and B-cell activation and differentiation, which can promote cGVHD development; however, ICOS is critical for the survival and homeostasis of iTregs, which can suppress cGVHD. Hence, ICOS balances the development of cGVHD and could offer a potential target after allo-HCT in the clinic.

6.
Cell Metab ; 23(5): 852-66, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27166946

RESUMO

Plasmacytoid dendritic cells (pDCs) are unique bone-marrow-derived cells that produce large amounts of type I interferon in response to microbial stimulation. Furthermore, pDCs also promote T cell tolerance in sterile-inflammation conditions. However, the immunomodulatory role of aortic pDCs in atherosclerosis has been poorly understood. Here, we identified functional mouse and human pDCs in the aortic intima and showed that selective, inducible pDC depletion in mice exacerbates atherosclerosis. Aortic pDCs expressed CCR9 and indoleamine 2,3-dioxygenase 1 (IDO-1), an enzyme involved in driving the generation of regulatory T cells (Tregs). As a consequence, loss of pDCs resulted in decreased numbers of Tregs and reduced IL-10 levels in the aorta. Moreover, antigen presentation by pDCs expanded antigen-specific Tregs in the atherosclerotic aorta. Notably, Tregs ablation affected pDC homeostasis in diseased aorta. Accordingly, pDCs in human atherosclerotic aortas colocalized with Tregs. Collectively, we identified a mechanism of atheroprotection mediated by tolerogenic aortic pDCs.


Assuntos
Aorta/patologia , Aterosclerose/enzimologia , Aterosclerose/prevenção & controle , Células Dendríticas/enzimologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Anticorpos/farmacologia , Aterosclerose/imunologia , Aterosclerose/patologia , Medula Óssea/patologia , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Epitopos , Homeostase/efeitos dos fármacos , Humanos , Interferon Tipo I/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Receptores de LDL/metabolismo , Fatores de Tempo , Receptor Toll-Like 9/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA