Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 6(7): 932-945, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33986530

RESUMO

The retinoic acid-inducible gene I (RIG-I) receptor senses cytoplasmic viral RNA and activates type I interferons (IFN-I) and downstream antiviral immune responses. How RIG-I binds to viral RNA and how its activation is regulated remains unclear. Here, using IFI16 knockout cells and p204-deficient mice, we demonstrate that the DNA sensor IFI16 enhances IFN-I production to inhibit influenza A virus (IAV) replication. IFI16 positively upregulates RIG-I transcription through direct binding to and recruitment of RNA polymerase II to the RIG-I promoter. IFI16 also binds to influenza viral RNA via its HINa domain and to RIG-I protein with its PYRIN domain, thus promoting IAV-induced K63-linked polyubiquitination and RIG-I activation. Our work demonstrates that IFI16 is a positive regulator of RIG-I signalling during influenza virus infection, highlighting its role in the RIG-I-like-receptor-mediated innate immune response to IAV and other RNA viruses, and suggesting its possible exploitation to modulate the antiviral response.


Assuntos
Proteína DEAD-box 58/genética , Vírus da Influenza A/fisiologia , Proteínas Nucleares/metabolismo , Infecções por Orthomyxoviridae/virologia , Fosfoproteínas/metabolismo , RNA Viral/metabolismo , Receptores Imunológicos/genética , Animais , Proteína DEAD-box 58/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Camundongos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Regulação para Cima/genética
2.
Viruses ; 13(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546185

RESUMO

The long-term control strategy of SARS-CoV-2 and other major respiratory viruses needs to include antivirals to treat acute infections, in addition to the judicious use of effective vaccines. Whilst COVID-19 vaccines are being rolled out for mass vaccination, the modest number of antivirals in use or development for any disease bears testament to the challenges of antiviral development. We recently showed that non-cytotoxic levels of thapsigargin (TG), an inhibitor of the sarcoplasmic/endoplasmic reticulum (ER) Ca2+ ATPase pump, induces a potent host innate immune antiviral response that blocks influenza A virus replication. Here we show that TG is also highly effective in blocking the replication of respiratory syncytial virus (RSV), common cold coronavirus OC43, SARS-CoV-2 and influenza A virus in immortalized or primary human cells. TG's antiviral performance was significantly better than remdesivir and ribavirin in their respective inhibition of OC43 and RSV. Notably, TG was just as inhibitory to coronaviruses (OC43 and SARS-CoV-2) and influenza viruses (USSR H1N1 and pdm 2009 H1N1) in separate infections as in co-infections. Post-infection oral gavage of acid-stable TG protected mice against a lethal influenza virus challenge. Together with its ability to inhibit the different viruses before or during active infection, and with an antiviral duration of at least 48 h post-TG exposure, we propose that TG (or its derivatives) is a promising broad-spectrum inhibitor against SARS-CoV-2, OC43, RSV and influenza virus.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Coronavirus Humano OC43/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Tapsigargina/farmacologia , Animais , Antivirais/uso terapêutico , Betacoronavirus/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Coronavirus Humano OC43/fisiologia , Estresse do Retículo Endoplasmático , Humanos , Vírus da Influenza A Subtipo H1N1/fisiologia , Camundongos , Testes de Sensibilidade Microbiana , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Vírus Sincicial Respiratório Humano/fisiologia , Ribavirina/farmacologia , SARS-CoV-2/fisiologia , Tapsigargina/uso terapêutico , Replicação Viral/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 117(29): 17204-17210, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32601207

RESUMO

Pigs are considered as important hosts or "mixing vessels" for the generation of pandemic influenza viruses. Systematic surveillance of influenza viruses in pigs is essential for early warning and preparedness for the next potential pandemic. Here, we report on an influenza virus surveillance of pigs from 2011 to 2018 in China, and identify a recently emerged genotype 4 (G4) reassortant Eurasian avian-like (EA) H1N1 virus, which bears 2009 pandemic (pdm/09) and triple-reassortant (TR)-derived internal genes and has been predominant in swine populations since 2016. Similar to pdm/09 virus, G4 viruses bind to human-type receptors, produce much higher progeny virus in human airway epithelial cells, and show efficient infectivity and aerosol transmission in ferrets. Moreover, low antigenic cross-reactivity of human influenza vaccine strains with G4 reassortant EA H1N1 virus indicates that preexisting population immunity does not provide protection against G4 viruses. Further serological surveillance among occupational exposure population showed that 10.4% (35/338) of swine workers were positive for G4 EA H1N1 virus, especially for participants 18 y to 35 y old, who had 20.5% (9/44) seropositive rates, indicating that the predominant G4 EA H1N1 virus has acquired increased human infectivity. Such infectivity greatly enhances the opportunity for virus adaptation in humans and raises concerns for the possible generation of pandemic viruses.


Assuntos
Genes Virais , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/epidemiologia , Influenza Humana/virologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Animais , China , Reações Cruzadas , Células Epiteliais/virologia , Variação Genética , Genótipo , Humanos , Vírus da Influenza A Subtipo H1N1/classificação , Influenza Humana/imunologia , Influenza Humana/transmissão , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/transmissão , Pandemias , Filogenia , Prevalência , Vírus Reordenados/genética , Estudos Soroepidemiológicos , Suínos
4.
Virol J ; 15(1): 68, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636078

RESUMO

BACKGROUND: With the recent discovery of novel H17N10 and H18N11 influenza viral RNA in bats and report on high frequency of avian H9 seroconversion in a species of free ranging bats, an important issue to address is the extent bats are susceptible to conventional avian and human influenza A viruses. METHOD: To this end, three bat species (Eidolon helvum, Carollia perspicillata and Tadarida brasiliensis) of lung epithelial cells were separately infected with two avian and two human influenza viruses to determine their relative host innate immune resistance to infection. RESULTS: All three species of bat cells were more resistant than positive control Madin-Darby canine kidney (MDCK) cells to all four influenza viruses. TB1-Lu cells lacked sialic acid α2,6-Gal receptors and were most resistant among the three bat species. Interestingly, avian viruses were relatively more replication permissive in all three bat species of cells than with the use of human viruses which suggest that bats could potentially play a role in the ecology of avian influenza viruses. Chemical inhibition of the JAK-STAT pathway in bat cells had no effect on virus production suggesting that type I interferon signalling is not a major factor in resisting influenza virus infection. CONCLUSION: Although all three species of bat cells are relatively more resistant to influenza virus infection than control MDCK cells, they are more permissive to avian than human viruses which suggest that bats could have a contributory role in the ecology of avian influenza viruses.


Assuntos
Quirópteros , Células Epiteliais/virologia , Especificidade de Hospedeiro , Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/virologia , Animais , Sobrevivência Celular , Células Cultivadas , Cães , Expressão Gênica , Vírus da Influenza A/classificação , Pulmão/citologia , Pulmão/imunologia , Células Madin Darby de Rim Canino , Neuraminidase/farmacologia , Receptores Virais/metabolismo , Proteínas Virais/genética , Liberação de Vírus/efeitos dos fármacos , Replicação Viral
5.
J Virol ; 90(18): 8105-14, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27384648

RESUMO

UNLABELLED: Adaptation of the viral polymerase complex comprising PB1, PB2, and PA is necessary for efficient influenza A virus replication in new host species. We found that PA mutation K356R (PA-K356R) has become predominant since 2014 in avian H9N2 viruses in China as with seasonal human H1N1 viruses. The same mutation is also found in most human isolates of emergent avian H7N9 and H10N8 viruses whose six internal gene segments are derived from the H9N2 virus. We further demonstrated the mammalian adaptive functionality of the PA-K356R mutation. Avian H9N2 virus with the PA-K356R mutation in human A549 cells showed increased nuclear accumulation of PA and increased viral polymerase activity that resulted in elevated levels of viral transcription and virus output. The same mutant virus in mice also enhanced virus replication and caused lethal infection. In addition, combined mutation of PA-K356R and PB2-E627K, a well-known mammalian adaptive marker, in the H9N2 virus showed further cooperative increases in virus production and severity of infection in vitro and in vivo In summary, PA-K356R behaves as a novel mammalian tropism mutation, which, along with other mutations such as PB2-E627K, might render avian H9N2 viruses adapted for human infection. IMPORTANCE: Mutations of the polymerase complex (PB1, PB2, and PA) of influenza A virus are necessary for viral adaptation to new hosts. This study reports a novel and predominant mammalian adaptive mutation, PA-K356R, in avian H9N2 viruses and human isolates of emergent H7N9 and H10N8 viruses. We found that PA-356R in H9N2 viruses causes significant increases in virus replication and severity of infection in human cells and mice and that PA-K356R cooperates with the PB2-E627K mutation, a well-characterized human adaptive marker, to exacerbate mammalian infection in vitro and in vivo Therefore, the PA-K356R mutation is a significant adaptation in H9N2 viruses and related H7N9 and H10N8 reassortants toward human infectivity.


Assuntos
Vírus da Influenza A Subtipo H9N2/fisiologia , Vírus da Influenza A Subtipo H9N2/patogenicidade , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Animais , Linhagem Celular , Modelos Animais de Doenças , Células Epiteliais/virologia , Humanos , Camundongos , Proteínas Mutantes/genética , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , RNA Polimerase Dependente de RNA/genética , Análise de Sobrevida , Proteínas Virais/genética , Tropismo Viral
6.
J Virol ; 90(14): 6235-6243, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27122581

RESUMO

UNLABELLED: Since May 2014, highly pathogenic avian influenza H5N6 virus has been reported to cause six severe human infections three of which were fatal. The biological properties of this subtype, in particular its relative pathogenicity and transmissibility in mammals, are not known. We characterized the virus receptor-binding affinity, pathogenicity, and transmissibility in mice and ferrets of four H5N6 isolates derived from waterfowl in China from 2013-2014. All four H5N6 viruses have acquired a binding affinity for human-like SAα2,6Gal-linked receptor to be able to attach to human tracheal epithelial and alveolar cells. The emergent H5N6 viruses, which share high sequence similarity with the human isolate A/Guangzhou/39715/2014 (H5N6), were fully infective and highly transmissible by direct contact in ferrets but showed less-severe pathogenicity than the parental H5N1 virus. The present results highlight the threat of emergent H5N6 viruses to poultry and human health and the need to closely track their continual adaptation in humans. IMPORTANCE: Extended epizootics and panzootics of H5N1 viruses have led to the emergence of the novel 2.3.4.4 clade of H5 virus subtypes, including H5N2, H5N6, and H5N8 reassortants. Avian H5N6 viruses from this clade have caused three fatalities out of six severe human infections in China since the first case in 2014. However, the biological properties of this subtype, especially the pathogenicity and transmission in mammals, are not known. Here, we found that natural avian H5N6 viruses have acquired a high affinity for human-type virus receptor. Compared to the parental clade 2.3.4 H5N1 virus, emergent H5N6 isolates showed less severe pathogenicity in mice and ferrets but acquired efficient in-contact transmission in ferrets. These findings suggest that the threat of avian H5N6 viruses to humans should not be ignored.


Assuntos
Vírus da Influenza A/patogenicidade , Influenza Humana/transmissão , Infecções por Orthomyxoviridae/transmissão , Vírus Reordenados/patogenicidade , Receptores de Superfície Celular/metabolismo , Ligação Viral , Animais , China , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Feminino , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A/classificação , Influenza Humana/patologia , Influenza Humana/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Filogenia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , Virulência
7.
J Gen Virol ; 96(9): 2587-2594, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26296365

RESUMO

H9N2 influenza viruses have been circulating worldwide in multiple avian species, and regularly infect pigs and humans. Recently, a novel protein, PA-X, produced from the PA gene by ribosomal frameshifting, was demonstrated to be an antivirulence factor in pandemic 2009 H1N1, highly pathogenic avian H5N1 and 1918 H1N1 viruses. However, a similar role of PA-X in the prevalent H9N2 avian influenza viruses has not been established. In this study, we compared the virulence and cytopathogenicity of H9N2 WT virus and H9N2 PA-X-deficient virus. Loss of PA-X in H9N2 virus reduced apoptosis and had a marginal effect on progeny virus output in human pulmonary adenocarcinoma (A549) cells. Without PA-X, PA was less able to suppress co-expressed GFP in human embryonic kidney 293T cells. Furthermore, absence of PA-X in H9N2 virus attenuated viral pathogenicity in mice, which showed no mortality, reduced progeny virus production, mild-to-normal lung histopathology, and dampened proinflammatory cytokine and chemokine response. Therefore, unlike previously reported H1N1 and H5N1 viruses, we show that PA-X protein in H9N2 virus is a pro-virulence factor in facilitating viral pathogenicity and that the pro- or antivirulence role of PA-X in influenza viruses is virus strain-dependent.


Assuntos
Vírus da Influenza A Subtipo H9N2/metabolismo , Influenza Aviária/virologia , Influenza Humana/virologia , Proteínas Repressoras/metabolismo , Proteínas não Estruturais Virais/metabolismo , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Galinhas , Citocinas/genética , Citocinas/imunologia , Feminino , Humanos , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/patogenicidade , Influenza Aviária/genética , Influenza Aviária/imunologia , Influenza Humana/genética , Influenza Humana/imunologia , Pulmão/imunologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Repressoras/genética , Proteínas não Estruturais Virais/genética , Fatores de Virulência/genética
8.
J Virol ; 89(5): 2494-506, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25540384

RESUMO

UNLABELLED: Skeletal muscle, at 30 to 40% of body mass, is the most abundant soft tissue in the body. Besides its primary function in movement and posture, skeletal muscle is a significant innate immune organ with the capacity to produce cytokines and chemokines and respond to proinflammatory cytokines. Little is known about the role of skeletal muscle during systemic influenza A virus infection in any host and particularly avian species. Here we used primary chicken and duck multinucleated myotubes to examine their susceptibility and innate immune response to influenza virus infections. Both chicken and duck myotubes expressed avian and human sialic acid receptors and were readily susceptible to low-pathogenicity (H2N3 A/mallard duck/England/7277/06) and high-pathogenicity (H5N1 A/turkey/England/50-92/91 and H5N1 A/turkey/Turkey/1/05) avian and human H1N1 (A/USSR/77) influenza viruses. Both avian host species produced comparable levels of progeny H5N1 A/turkey/Turkey/1/05 virus. Notably, the rapid accumulation of viral nucleoprotein and matrix (M) gene RNA in chicken and duck myotubes was accompanied by extensive cytopathic damage with marked myotube apoptosis (widespread microscopic blebs, caspase 3/7 activation, and annexin V binding at the plasma membrane). Infected chicken myotubes produced significantly higher levels of proinflammatory cytokines than did the corresponding duck cells. Additionally, in chicken myotubes infected with H5N1 viruses, the induction of interferon beta (IFN-ß) and IFN-inducible genes, including the melanoma differentiation-associated protein 5 (MDA-5) gene, was relatively weak compared to infection with the corresponding H2N3 virus. Our findings highlight that avian skeletal muscle fibers are capable of productive influenza virus replication and are a potential tissue source of infection. IMPORTANCE: Infection with high-pathogenicity H5N1 viruses in ducks is often asymptomatic, and skeletal muscle from such birds could be a source of infection of humans and animals. Little is known about the ability of influenza A viruses to replicate in avian skeletal muscle fibers. We show here that cultured chicken and duck myotubes were highly susceptible to infection with both low- and high-pathogenicity avian influenza viruses. Infected myotubes of both avian species displayed rapid virus accumulation, apoptosis, and extensive cellular damage. Our results indicate that avian skeletal muscle fibers of chicken and duck could be significant contributors to progeny production of highly pathogenic H5N1 viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H3N2/crescimento & desenvolvimento , Virus da Influenza A Subtipo H5N1/crescimento & desenvolvimento , Fibras Musculares Esqueléticas/virologia , Animais , Apoptose , Células Cultivadas , Galinhas , Citocinas/metabolismo , Efeito Citopatogênico Viral , Patos , Perfilação da Expressão Gênica , RNA Mensageiro/biossíntese , RNA Viral/biossíntese , Receptores Virais/análise , Ácidos Siálicos/análise
9.
PLoS One ; 9(10): e109023, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25313647

RESUMO

Respiratory epithelial cells play a key role in influenza A virus (IAV) pathogenesis and host innate response. Transformed human respiratory cell lines are widely used in the study of IAV-host interactions due to their relative convenience, and inherent difficulties in working with primary cells. Transformed cells, however, may have altered susceptibility to virus infection. Proper characterization of different respiratory cell types in their responses to IAV infection is therefore needed to ensure that the cell line chosen will provide results that are of relevance in vivo. We compared replication kinetics of human H1N1 (A/USSR/77) IAVs in normal primary human bronchial epithelial (NHBE) and two commonly used respiratory epithelial cell lines namely BEAS-2B and A549 cells. We found that IAV replication was distinctly poor in BEAS-2B cells in comparison with NHBE, A549 and Madin-Darby canine kidney (MDCK) cells. IAV resistance in BEAS-2B cells was accompanied by an activated antiviral state with high basal expression of interferon (IFN) regulatory factor-7 (IRF-7), stimulator of IFN genes (STING) and IFN stimulated genes (ISGs). Treatment of BEAS-2B cells with a pan-Janus-activated-kinase (JAK) inhibitor decreased IRF-7 and ISG expression and resulted in increased IAV replication. Therefore, the use of highly resistant BEAS-2B cells in IAV infection may not reflect the cytopathogenicity of IAV in human epithelial cells in vivo.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Epiteliais/metabolismo , Vírus da Influenza A Subtipo H1N1/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Aves , Células Cultivadas , Cães , Regulação para Baixo/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/virologia , Humanos , Vírus da Influenza A/fisiologia , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo , Células Madin Darby de Rim Canino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Fatores de Transcrição STAT/antagonistas & inibidores , Fatores de Transcrição STAT/metabolismo , Replicação Viral/efeitos dos fármacos
10.
Virol J ; 9: 230, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-23043930

RESUMO

BACKGROUND: One requisite of quantitative reverse transcription PCR (qRT-PCR) is to normalise the data with an internal reference gene that is invariant regardless of treatment, such as virus infection. Several studies have found variability in the expression of commonly used housekeeping genes, such as beta-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), under different experimental settings. However, ACTB and GAPDH remain widely used in the studies of host gene response to virus infections, including influenza viruses. To date no detailed study has been described that compares the suitability of commonly used housekeeping genes in influenza virus infections. The present study evaluated several commonly used housekeeping genes [ACTB, GAPDH, 18S ribosomal RNA (18S rRNA), ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide (ATP5B) and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) (ATP5G1)] to identify the most stably expressed gene in human, pig, chicken and duck cells infected with a range of influenza A virus subtypes. RESULTS: The relative expression stability of commonly used housekeeping genes were determined in primary human bronchial epithelial cells (HBECs), pig tracheal epithelial cells (PTECs), and chicken and duck primary lung-derived cells infected with five influenza A virus subtypes. Analysis of qRT-PCR data from virus and mock infected cells using NormFinder and BestKeeper software programmes found that 18S rRNA was the most stable gene in HBECs, PTECs and avian lung cells. CONCLUSIONS: Based on the presented data from cell culture models (HBECs, PTECs, chicken and duck lung cells) infected with a range of influenza viruses, we found that 18S rRNA is the most stable reference gene for normalising qRT-PCR data. Expression levels of the other housekeeping genes evaluated in this study (including ACTB and GPADH) were highly affected by influenza virus infection and hence are not reliable as reference genes for RNA normalisation.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A/genética , RNA Ribossômico 18S/genética , Actinas/genética , Animais , Células Cultivadas , Embrião de Galinha , Galinhas , Cães , Patos , Perfilação da Expressão Gênica/normas , Genes Essenciais/genética , Gliceraldeído-3-Fosfato Desidrogenases/genética , Humanos , Pulmão/citologia , Pulmão/virologia , Reação em Cadeia da Polimerase em Tempo Real , Padrões de Referência , Mucosa Respiratória/citologia , Mucosa Respiratória/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Software , Suínos
11.
J Virol ; 86(17): 9201-10, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22718824

RESUMO

Respiratory epithelial cells and macrophages are the key innate immune cells that play an important role in the pathogenesis of influenza A virus infection. We found that these two cell types from both human and pig showed comparable susceptibilities to initial infection with a highly pathogenic avian influenza (HPAI) H5N1 virus (A/turkey/Turkey/1/05) and a moderately pathogenic human influenza H1N1 virus (A/USSR/77), but there were contrasting differences in host innate immune responses. Human cells mounted vigorous cytokine (tumor necrosis factor alpha [TNF-α] and interleukin-6 [IL-6]) and chemokine (CXCL9, CXCL10, and CXCL11) responses to H5N1 virus infection. However, pig epithelial cells and macrophages showed weak or no TNF-α and chemokine induction with the same infections. The apparent lack of a strong proinflammatory response, corroborated by the absence of TNF-α induction in H5N1 virus-challenged pigs, coincided with greater cell death and the reduced release of infectious virus from infected pig epithelial cells. Suppressor of cytokine signaling 3 (SOCS3), a protein suppressor of the JAK-STAT pathway, was constitutively highly expressed and transcriptionally upregulated in H5N1 virus-infected pig epithelial cells and macrophages, in contrast to the corresponding human cells. The overexpression of SOCS3 in infected human macrophages dampened TNF-α induction. In summary, we found that the reported low susceptibility of pigs to contemporary Eurasian HPAI H5N1 virus infections coincides at the level of innate immunity of respiratory epithelial cells and macrophages with a reduced output of viable virus and an attenuated proinflammatory response, possibly mediated in part by SOCS3, which could serve as a target in the treatment or prevention of virus-induced hypercytokinemia, as observed for humans.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/fisiologia , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/imunologia , Liberação de Vírus , Animais , Linhagem Celular , Células Cultivadas , Quimiocinas/genética , Quimiocinas/imunologia , Embrião de Galinha , Citocinas/genética , Citocinas/imunologia , Humanos , Imunidade Inata , Vírus da Influenza A Subtipo H1N1/genética , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Humana/genética , Influenza Humana/virologia , Macrófagos/imunologia , Macrófagos/virologia , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Suínos , Doenças dos Suínos/genética , Doenças dos Suínos/virologia
12.
Am J Physiol Cell Physiol ; 297(4): C1012-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19625607

RESUMO

The effect of constitutively activated proto-oncogene H-ras (H-rasQ61L) on the regulation of myosin heavy chain (MHC) promoter activities was investigated in rabbit satellite cell-derived muscle cell culture during the proliferation stage and early and later stages of differentiation, respectively. During proliferation, overexpression of H-rasQ61L did not affect basal level of activity of the slow MHCI/beta or the fast MHCIId/x promoter luciferase reporter gene construct in transient transfection assays. By contrast, H-rasQ61L affected both MHC promoter activities during differentiation, and this effect changes from inactivation after 2 days to activation after 4 days of differentiation. The activating effect of H-rasQ61L on both MHC promoters after 4 days of differentiation was significantly reduced by LY-294002, a specific inhibitor of the phosphoinositol-3-kinase (PI3K), a downstream target of Ras. Furthermore, the protein kinase Akt (protein kinase B), a downstream target of PI3k, was activated 4 days after initiation of differentiation in myotubes overexpressing H-rasQ61L. By contrast, inhibition of another Ras downstream pathway, mitogen-activated protein kinase kinase 1/2-extracellular signal-regulated protein kinase 1/2 (MKK1/2-ERK1/2-MAPK), increased activities of both MHC promoters, indicating a suppressive role of this pathway. Moreover, the Ras-PI3K-Akt signaling pathway is involved in the activation of MHCI/beta and IId/x promoters in a later stage of differentiation of muscle cells, presumably by a known inhibiting effect of activated Akt on the MKK1/2-ERK1/2-MAPK pathway. The experiments demonstrate that during differentiation of muscle cells activated H-ras is an important regulator of MHC isoform promoter function with opposite effects during early and later stages.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células , Cadeias Pesadas de Miosina/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Animais , Células Cultivadas , Cromonas/farmacologia , Genes ras , Sistema de Sinalização das MAP Quinases/fisiologia , Morfolinas/farmacologia , Cadeias Pesadas de Miosina/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas p21(ras)/biossíntese , Proteínas Proto-Oncogênicas p21(ras)/genética , Coelhos , Células Satélites de Músculo Esquelético/citologia , Transdução de Sinais
13.
Cell Tissue Res ; 329(3): 515-27, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17587059

RESUMO

In skeletal muscle, calcineurin is crucial for myocyte differentiation and in the determination of the slow oxidative fibre phenotype, both processes being important determinants of muscle performance, metabolic health and meat-animal production. Fibre type is defined by the isoform identity of the skeletal myosin heavy chain (MyHC). We have examined the responses of the major MyHC genes to calcineurin signalling during fibre formation of muscle C2C12 cells. We have found that calcineurin acts as a signal to up-regulate the fast-oxidative MyHC2a gene and to down-regulate the faster MyHC2x and MyHC2b genes in a manner that appears to be NFAT-independent. Contrary to expectation, the up-regulation of MyHCslow by calcineurin seems to be time-dependent and is only detectable once the initial differential expression of the post-natal fast MyHC genes has been established. The simultaneous elevated expression of MyHC2a and the repression of MyHC2x and MyHC2b expression indicate that both processes (elevation and repression) are actively coordinated during oxidative fibre conversion. We have further determined that muscle LIM protein (MLP), a calcineurin-binding Z-line co-factor, is induced by calcineurin and that its co-expression with calcineurin has an additive effect on MyHCslow expression. Hence, post-natal fast MyHCs are important early effector targets of calcineurin, whereas MyHCslow up-regulation is mediated in part by calcineurin-induced MLP.


Assuntos
Calcineurina/metabolismo , Regulação da Expressão Gênica , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/genética , Animais , Diferenciação Celular , Linhagem Celular , Proteínas com Domínio LIM , Camundongos , Fibras Musculares Esqueléticas/citologia , Proteínas Musculares/metabolismo , Músculo Esquelético/citologia , Cadeias Pesadas de Miosina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
14.
BMC Vet Res ; 2: 23, 2006 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-16869957

RESUMO

BACKGROUND: Porcine congenital splayleg (PCS) is the most important congenital condition of piglets, associated with lameness and immobility, of unknown aetiology and pathogenesis, hence the need to better understand the condition by defining, in the first instance, its histopathology and molecular pathology. RESULTS: Semitendinosus, longissimus dorsi, and gastrocnemius muscles were removed from 4 sets of 2-day-old splayleg piglets, each with a corresponding normal litter mate. Based on immunohistochemistry and histological image analysis, PCS piglets showed significantly smaller fibre size without any accompanying sign of inflammation. Although there was no dramatic change in fibre type composition in affected muscles, several structural myosin heavy chain genes were significantly down-regulated. MAFbx, a major atrophy marker, was highly up-regulated in nearly all PCS muscles, in comparison with controls from normal litter mates. In contrast, P311, a novel 8 kDa protein, was relatively down-regulated in all the PCS muscles. To investigate a functional role of P311 in skeletal muscle, its full-length cDNA was over-expressed in murine C2C12 muscle cells, which resulted in enhanced cell proliferation with reduced myotube formation. Hence, reduced P311 expression in PCS piglets might contribute to atrophy through reduced muscle cell proliferation. P311, predictably, was down-regulated by the over-expression of calcineurin, a key signalling factor of muscle differentiation. CONCLUSION: We demonstrated that PCS is a condition characterised by extensive fibre atrophy and raised fibre density, and propose that the combined differential expression of MAFbx and P311 is of potential in the diagnosis of subclinical PCS.


Assuntos
Proteínas Musculares/metabolismo , Atrofia Muscular/congênito , Proteínas do Tecido Nervoso/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Doenças dos Suínos/congênito , Animais , Regulação para Baixo , Feminino , Regulação da Expressão Gênica , Masculino , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Oncogênicas/genética , Proteínas Ligases SKP Culina F-Box/genética , Suínos , Regulação para Cima
15.
BMC Genomics ; 4(1): 8, 2003 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-12611633

RESUMO

BACKGROUND: Microarray profiling has the potential to illuminate the molecular processes that govern the phenotypic characteristics of porcine skeletal muscles, such as hypertrophy or atrophy, and the expression of specific fibre types. This information is not only important for understanding basic muscle biology but also provides underpinning knowledge for enhancing the efficiency of livestock production. RESULTS: We report on the de novo development of a composite skeletal muscle cDNA microarray, comprising 5500 clones from two developmentally distinct cDNA libraries (longissimus dorsi of a 50-day porcine foetus and the gastrocnemius of a 3-day-old pig). Clones selected for the microarray assembly were of low to moderate abundance, as indicated by colony hybridisation. We profiled the differential expression of genes between the psoas (red muscle) and the longissimus dorsi (white muscle), by co-hybridisation of Cy3 and Cy5 labelled cDNA derived from these two muscles. Results from seven microarray slides (replicates) correctly identified genes that were expected to be differentially expressed, as well as a number of novel candidate regulatory genes. Quantitative real-time RT-PCR on selected genes was used to confirm the results from the microarray. CONCLUSION: We have developed a porcine skeletal muscle cDNA microarray and have identified a number of candidate genes that could be involved in muscle phenotype determination, including several members of the casein kinase 2 signalling pathway.


Assuntos
DNA Complementar/genética , Perfilação da Expressão Gênica/métodos , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Suínos/genética , Transcrição Gênica/genética , Animais , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Caseína Quinase II , Clonagem Molecular/métodos , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/genética , Genes Supressores de Tumor , Fibras Musculares de Contração Rápida/química , Fibras Musculares de Contração Rápida/metabolismo , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Fenótipo , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética , Músculos Psoas/química , Músculos Psoas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/genética
16.
Cell Signal ; 15(5): 471-8, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12639710

RESUMO

Calcineurin (CnA) is an important signalling molecule in skeletal muscle, in the promotion of differentiation, slow-fibre phenotype and possibly fibre hypertrophy. We found that stable expression of constitutively active CnA in muscle C2C12 cells strongly activated NF-kappaB, a key mediator of muscle wasting. NF-kappaB activation by CnA was associated with elevated phospho-IkappaBalpha, and could be repressed by specific genetic (porZAKI-4 and porDSCR1) and chemical (cyclosporin A) inhibitors of CnA, but tumour necrosis factor-alpha (TNF-alpha) appeared not to be a key component in the cross-talk. Functionally, CnA-induced NF-kappaB activation seemed to interfere with terminal muscle differentiation. We therefore showed a functional interaction between the CnA and NF-kappaB pathways in skeletal muscle cells, which involved opposing phenotypic effects of CnA.


Assuntos
Calcineurina/metabolismo , Músculo Esquelético/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares , Animais , Calcineurina/genética , Diferenciação Celular , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas I-kappa B/metabolismo , Músculo Esquelético/citologia , Inibidor de NF-kappaB alfa , Fatores de Transcrição NFATC , Fatores de Transcrição/metabolismo , Ativação Transcricional , Transfecção , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA