Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38398060

RESUMO

This in vitro study examines the anti-oral cancer effects and mechanisms of a combined X-ray/SK2 treatment, i.e., X-ray and 6-n-butoxy-10-nitro-12,13-dioxa-11-azatricyclo[7.3.1.02,7]trideca-2,4,6,10-tetraene (SK2). ATP cell viability and flow cytometry-based cell cycle, apoptosis, oxidative stress, and DNA damage assessments were conducted. The X-ray/SK2 treatment exhibited lower viability in oral cancer (Ca9-22 and CAL 27) cells than in normal (Smulow-Glickman, S-G) cells, i.e., 32.0%, 46.1% vs. 59.0%, which showed more antiproliferative changes than with X-ray or SK2 treatment. Oral cancer cells under X-ray/SK2 treatment showed slight subG1 and G2/M increments and induced high annexin V-monitored apoptosis compared to X-ray or SK2 treatment. The X-ray/SK2 treatment showed higher caspase 3 and 8 levels for oral cancer cells than other treatments. X-ray/SK2 showed a higher caspase 9 level in CAL 27 cells than other treatments, while Ca9-22 cells showed similar levels under X-ray and/or SK2. The X-ray/SK2 treatment showed higher reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) depletion than other treatments. Meanwhile, the mitochondrial superoxide (MitoSOX) and glutathione levels in X-ray/SK2 treatment did not exhibit the highest rank compared to others. Moreover, oral cancer cells had higher γH2AX and/or 8-hydroxy-2-deoxyguanosine levels from X-ray/SK2 treatment than others. All these measurements for X-ray/SK2 in oral cancer cells were higher than in normal cells and attenuated by N-acetylcysteine. In conclusion, X-ray/SK2 treatment showed ROS-dependent enhanced antiproliferative, apoptotic, and DNA damage effects in oral cancer cells with a lower cytotoxic influence on normal cells.

2.
Life Sci ; 329: 121835, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295712

RESUMO

Fluorene was previously reported to have anticancer activity against human cancer cells. In this study, we examined the in vitro function of 9-methanesulfonylmethylene-2, 3-dimethoxy-9 H -fluorene (MSDF), a novel fluorene derivative, its anticancer potential in human hepatocellular carcinoma (HCC) cells and its underlying molecular mechanism. The disruption of cellular homeostasis caused by MSDF was found to promote reactive oxygen species (ROS) generation, leading to the activation of cellular apoptosis. As a survival strategy, cells undergo autophagy during oxidative stress. MSDF-induced apoptosis occurred through both receptor-mediated extrinsic and mitochondrial-mediated intrinsic routes. The development of acidic vesicular organelles and the accumulation of LC3-II protein suggest an increase in the autophagic process. Apoptosis was detected by double staining. The MAPK/ERK and PI3K/Akt signaling pathways were indeed suppressed during treatment. Along with elevated ROS generation and apoptosis, MSDF also caused anoikis and cell death by causing cells to lose contact with their extracellular matrix. ROS production was induced by MSDF and sustained by an NAC scavenger. MSDF-induced apoptosis led to increased autophagy, as shown by the suppression of apoptosis by Z-VAD-FMK. However, inhibition of autophagy by inhibitor 3-MA increased MSDF-induced apoptosis. More evidence shows that MSDF downregulated the expression of immune checkpoint proteins, suggesting that MSDF could be used in the future as an adjuvant to improve the effectiveness of HCC immunotherapy. Altogether, our results highlight the potential of MSDF as a multitarget drug for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Espécies Reativas de Oxigênio/metabolismo , Anoikis , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Apoptose , Autofagia/fisiologia , Fluorenos/farmacologia
3.
Antioxidants (Basel) ; 11(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36290795

RESUMO

A novel nitrated [6,6,6]tricycles-derived compound containing nitro, methoxy, and ispropyloxy groups, namely SK1, was developed in our previous report. However, the anticancer effects of SK1 were not assessed. Moreover, SK1 contains two nitro groups (NO2) and one nitrogen-oxygen (N-O) bond exhibiting the potential for oxidative stress generation, but this was not examined. The present study aimed to evaluate the antiproliferation effects and oxidative stress and its associated responses between oral cancer and normal cells. Based on the MTS assay, SK1 demonstrated more antiproliferation ability in oral cancer cells than normal cells, reversed by N-acetylcysteine. This suggests that SK1 causes antiproliferation effects preferentially in an oxidative stress-dependent manner. The oxidative stress-associated responses were further validated, showing higher ROS/MitoSOX burst, MMP, and GSH depletion in oral cancer cells than in normal cells. Meanwhile, SK1 caused oxidative stress-causing apoptosis, such as caspases 3/8/9, and DNA damages, such as γH2AX and 8-OHdG, to a greater extent in oral cancer cells than in normal cells. Siilar to cell viability, these oxidative stress responses were partially diminished by NAC, indicating that SK1 promoted oxidative stress-dependent responses. In conclusion, SK1 exerts oxidative stress, apoptosis, and DNA damage to a greater extent to oral cancer cells than in normal cells.

4.
Antioxidants (Basel) ; 11(5)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35624790

RESUMO

SK2, a nitrated [6,6,6]tricycle derivative with an n-butyloxy group, showed selective antiproliferation effects on oral cancer but not on normal oral cells. This investigation assessed for the first time the synergistic antiproliferation potential of cisplatin/SK2 in oral cancer cells. Cell viability assay at 24 h showed that a low dose of combined cisplatin/SK2 (10 µM/10 µg/mL) provided more antiproliferation than cisplatin or SK2 alone. Cisplatin/SK2 triggered also more apoptosis inductions in terms of subG1 accumulation, annexin V, pancaspase, and caspase 3/8/9 measurements. Moreover, cisplatin/SK2 provided more oxidative stress and DNA damage in oral cancer cells than independent treatments. Oxidative stress inhibitors rescued the cisplatin/SK2-induced antiproliferation and oxidative stress generation. Moreover, cisplatin/SK2 induced more antiproliferation, apoptosis, oxidative stress, and DNA damage in oral cancer cells than in normal oral cells (S-G). In conclusion, low-dose cisplatin/SK2 combined treatment promoted selective and synergistic antiproliferation in oral cancer cells depending on oxidative-stress-associated responses.

5.
Biomedicines ; 10(5)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35625933

RESUMO

Combined treatment is an effective strategy to improve anticancer therapy, but severe side effects frequently limit this application. Drugs inhibiting the proliferation of cancer cells, but not normal cells, display preferential antiproliferation to cancer cells. It shows the benefits of avoiding side effects and enhancing antiproliferation for combined treatment. Nitrated [6,6,6]tricycles derivative (SK2), a novel chemical exhibiting benzo-fused dioxabicyclo[3.3.1]nonane core with an n-butyloxy substituent, exhibiting preferential antiproliferation, was chosen to evaluate its potential antioral cancer effect in vitro by combining it with ultraviolet C (UVC) irradiation. Combination treatment (UVC/SK2) caused lower viability in oral cancer cells (Ca9-22 and OC-2) than single treatment (20 J/m2 UVC or 10 µg/mL SK2), i.e., 42.3%/41.1% vs. 81.6%/69.2%, and 89.5%/79.6%, respectively. In contrast, it showed a minor effect on cell viability of normal oral cells (HGF-1), ranging from 82.2 to 90.6%. Moreover, UVC/SK2 caused higher oxidative stress in oral cancer cells than normal cells through the examination of reactive oxygen species, mitochondrial superoxide, and mitochondrial membrane potential. UVC/SK2 also caused subG1 increment associated with apoptosis detections by assessing annexin V; panaspase; and caspases 3, 8, and 9. The antiproliferation and oxidative stress were reverted by N-acetylcysteine, validating the involvement of oxidative stress in antioral cancer cells. UVC/SK2 also caused DNA damage by detecting γH2AX and 8-hydroxy-2'-deoxyguanosine in oral cancer cells. In conclusion, SK2 is an effective enhancer for improving the UVC-caused antiproliferation against oral cancer cells in vitro. UVC/SK2 demonstrated a preferential and synergistic antiproliferation ability towards oral cancer cells with little adverse effects on normal cells.

6.
Molecules ; 27(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35268676

RESUMO

The benzo-fused dioxabicyclo[3.3.1]nonane core is the central framework in several natural products. Using this core, we had developed a novel nitrated [6,6,6]tricycle-derived compound containing an n-butyloxy group, namely, SK2. The anticancer potential of SK2 was not assessed. This study aimed to determine the antiproliferative function and investigated possible mechanisms of SK2 acting on oral cancer cells. SK2 preferentially killed oral cancer cells but caused no harmful effect on non-malignant oral cells. After the SK2 exposure of oral cancer cells, cells in the sub-G1 phase accumulated. This apoptosis-like outcome of SK2 treatment was validated to be apoptosis via observing an increasing annexin V population. Mechanistically, apoptosis signalers such as pancaspase, caspases 8, caspase 9, and caspase 3 were activated by SK2 in oral cancer cells. SK2 induced oxidative-stress-associated changes. Furthermore, SK2 caused DNA damage (γH2AX and 8-hydroxy-2'-deoxyguanosine). In conclusion, a novel nitrated [6,6,6]tricycle-derived compound, SK2, exhibits a preferential antiproliferative effect on oral cancer cells, accompanied by apoptosis, oxidative stress, and DNA damage.


Assuntos
Nitratos
7.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899415

RESUMO

The sensitizing effect of chromone-derived compounds on UVC-induced proliferation inhibition has not been comprehensively investigated so far. The subject of this study was to examine the proliferation change of oral cancer cells while using the combined treatment of UVC (254 nm) with our previously developed sulfonyl chromen-4-ones (CHW09), namely UVC/CHW09. Cell viability, apoptosis, oxidative stress, and DNA damage for the individual and combined treatments for UVC and/or CHW09 were examined in oral cancer Ca9-22 cells. In 24 h MTS assay, UVC (30 J/m2; UVC30), or CHW09 (25 and 50 µg/mL; namely, CHW09-25 and CHW09-50) show 54%, 59%, and 45% viability. The combined treatment (UVC30/CHW09-25 and UVC30/CHW09-50) show lower cell viability (45% and 35%). Mechanistically, UVC/CHW09 induced higher apoptosis than individual treatments and untreated control, which were supported by the evidence of flow cytometry for subG1, annexin V/7-aminoactinomycin D, pancaspase and caspases 3/7 activity, and western blotting for cleaved poly(ADP-ribose) polymerase. Moreover, this cleaved PARP expression was downregulated by pancaspase inhibitor Z-VAD-FMK. UVC/CHW09 showed higher oxidative stress than individual treatments and untreated control in terms of flow cytometry for reactive oxygen species, mitochondrial membrane potential, and mitochondrial mass. Furthermore, UVC/CHW09 showed higher DNA damage than individual treatments and untreated control in terms of flow cytometry for H2A histone family member X and 8-oxo-2'-deoxyguanosine. In conclusion, combined treatment UVC/CHW09 suppresses proliferation, and promotes apoptosis, oxidative stress, and DNA damage against oral cancer cells, providing a novel application of sulfonyl chromen-4-ones in order to sensitize UVC induced proliferation inhibition for oral cancer therapy.


Assuntos
Apoptose , Proliferação de Células , Cromonas/farmacologia , Dano ao DNA , Neoplasias Bucais/patologia , Estresse Oxidativo , Raios Ultravioleta , Ciclo Celular , Movimento Celular , Cromonas/química , Terapia Combinada , Humanos , Potencial da Membrana Mitocondrial , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Neoplasias Bucais/radioterapia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas
8.
Int J Radiat Biol ; 95(9): 1226-1235, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31141432

RESUMO

Purpose: This study evaluates the growth inhibiting potential of our previously described sulfonyl chromen-4-ones (CHW09) compound in X-ray irradiated oral cancer cells. Materials and methods: The growth inhibiting effect and mechanism of combined CHW09/X-ray treatment was examined by analyzing cell viability, cell cycle, apoptosis, reactive oxygen species (ROS), and DNA damage. Results: Individual treatments of CHW09 (10 µg/mL) and X-ray irradiation (12 Gy) slightly decreased cell viability of oral cancer Ca9-22 (87.25% and 86.54%) and CAL 27 (80.00% and 74.01%) cells and normal oral HGF-1 cells (92.76% and 87.56%) at 24 h-MTS assay, respectively. In a combined treatment (CHW09/X-ray), the cell viability in Ca9-22 and CAL 27 cells was significantly decreased to 73.48% and 59.07%, whereas HGF-1 cells maintained 84.97% viability in 24 h-MTS assay. For CAL 27 cells, both 72 h-MTS assay and clonogenic assay showed that CHW09/X-ray resulted in more growth inhibition than other treatments. Intracellular ROS levels of CHW09/X-ray were higher than for CHW09, X-ray and control. CHW09/X-ray and X-ray alone had higher G2/M arrest than the control and CHW09 alone. Moreover, flow cytometry and western blotting showed that CHW09/X-ray treatment caused higher apoptosis levels. Levels of H2A histone family member X (γH2AX)-based DNA damage and 8-oxo-2'-deoxyguanosine (8-oxodG)-oxidative DNA damage of CHW09/X-ray were higher than for CHW09, X-ray and control. Conclusion: CHW09/X-ray treatment had additive growth inhibiting effects against X-ray irradiated oral cancer cells, partly attributing to apoptosis and ROS generation.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Benzopiranos/química , Benzopiranos/farmacologia , Neoplasias Bucais/patologia , Espécies Reativas de Oxigênio/metabolismo , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Humanos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Raios X
9.
Environ Toxicol ; 33(11): 1195-1203, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30256521

RESUMO

Several functionalized chromones, the key components of naturally occurring oxygenated heterocycles, have anticancer effects but their sulfone compounds are rarely investigated. In this study, we installed a sulfonyl substituent to chromen-4-one skeleton and synthesized CHW09 to evaluate its antioral cancer effect in terms of cell viability, cell cycle, apoptosis, oxidative stress, and DNA damage. In cell viability assay, CHW09 preferentially kills two oral cancer cells (Ca9-22 and CAL 27), less affecting normal oral cells (HGF-1). Although CHW09 does not change the cell cycle distribution significantly, CHW09 induces apoptosis validated by flow cytometry for annexin V and by western blotting for cleaved poly(ADP-ribose) polymerase (PARP), and caspases 3/8/9. These apoptosis signaling expressions are partly decreased by apoptosis inhibitor (Z-VAD-FMK) or free radical scavenger (N-acetylcysteine). Furthermore, CHW09 induces oxidative stress validated by flow cytometry for the generations of reactive oxygen species (ROS) and mitochondrial superoxide (MitoSOX), and the suppression of mitochondrial membrane potential (MMP). CHW09 also induces DNA damage validated by flow cytometry for the increases of DNA double strand break marker γH2AX and oxidative DNA damage marker 8-oxo-2'-deoxyguanosine (8-oxodG). Therefore, our newly synthesized CHW09 induces apoptosis, oxidative stress, and DNA damage, which may lead to preferential killing of oral cancer cells compared with normal oral cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cromonas/farmacologia , Dano ao DNA , Neoplasias Bucais/patologia , Estresse Oxidativo/efeitos dos fármacos , 8-Hidroxi-2'-Desoxiguanosina , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromonas/química , Desoxiguanosina/análogos & derivados , Desoxiguanosina/farmacologia , Sequestradores de Radicais Livres/farmacologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neoplasias Bucais/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Org Lett ; 14(9): 2198-201, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22515182

RESUMO

A straightforward synthesis of 3,8-dimethoxy-10,11-dihydrobenzo[j]fluoranthen-12-ones 1 is reported in a seven-step route from biphenyl-4,4'-diol 2 via the transformation of a double Claisen rearrangement, cross metathesis with ethyl acrylate, and polyphosphoric acid (PPA)-promoted Friedel-Crafts electrophilic benzannulation in good yields.


Assuntos
Fluorenos/síntese química , Ácidos Fosfóricos/química , Polímeros/química , Catálise , Fluorenos/química , Estrutura Molecular
11.
Bioorg Med Chem Lett ; 17(3): 617-20, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17113288

RESUMO

A novel glucose-conjugated paclitaxel 5 was synthesized using succinic acid as linker between 2'-paclitaxel and methyl 2'-glucopyranose. 5 has not only improved the pharmaceutical properties of paclitaxel, such as solubility and stability, but also enhanced the specific target delivery to MCF-7 cells without the cytotoxicity against normal cells. Therefore, the glucose conjugation may be potentially used in the targeted delivery of other drugs into cells via glucose transporters (GLUTs) for cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/farmacologia , Neoplasias/tratamento farmacológico , Paclitaxel/análogos & derivados , Paclitaxel/síntese química , Succinatos/síntese química , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Fenômenos Químicos , Físico-Química , Cromatografia Líquida de Alta Pressão , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Humanos , Indicadores e Reagentes , Neoplasias/patologia , Paclitaxel/farmacologia , Solubilidade , Succinatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA