RESUMO
BACKGROUND: Tissue expansion for treating giant congenital melanocytic nevi (GCMN) is a commonly employed surgical method. However, the procedure's efficacy is often hindered by anatomical and histological characteristics as well as blood supply, particularly in the extremities and trunk. Enhancing expansion efficiency while reducing complications is thus a topic to be investigated, especially for pediatric patients undergoing rapid physical and psychological development with higher risks of non-compliance to medical instructions. OBJECT: To explore the effectiveness of expansion in extremities and trunk by immobilizing the acellular dermal matrix (ADM) in the gravitational force zone of inflating expanders. METHODS: All patients involved in this research underwent ADM-assisted tissue expansion in either the extremities or trunk. ADM was fully flattened, securely fixed to the lower pole of the expander, and subsequently attached to the inner surface of the expanding flap. RESULTS: From 2021 to 2023, a total of nine pediatric patients with GCMN underwent the ADM-assisted tissue expansion. All patients achieved the desired expanding volume without experiencing petechiae, ecchymosis, or skin ulceration in the ADM-covered area. The process was well tolerated by all patients, with no reports of itching, pain, allergic reaction, or fever. During the flap transfer, the ADM was observed to be firmly adhered to the expanding flap with discernible capillary network. CONCLUSION: ADM-assisted tissue expansion demonstrates promise in augmenting expansion efficiency and reducing the time needed for surgical intervention in the extremities and trunk, thereby presenting significant clinical value for pediatric patients afflicted with GCMN.
RESUMO
BACKGROUND: Hypertrophic scars (HS) cause functional impairment and cosmetic deformities following surgeries or burns (30% to 94%). There is no target therapy yet because the pathogenesis of HS progression is not well-known. In tissue fibrosis, Zinc finger E-box binding homeobox 1 (ZEB1) abnormal upregulation is an important cause for extracellular matrix (ECM) overexpression, which is the main molecular change in HS. Therefore, we hypothesized that ZEB1-knockdown inhibits HS formation. METHODS: ZEB1 expression in human HS and TGF-ß1-induced fibroblasts were identified by PCR and western blotting. ZEB1 was knockdown by siRNA in HS fibroblasts (HSFs) and mouse HS model (C57/BL6, male, 8-12 weeks). After 8-hour-transfection, HSFs were subjected to PCR, western blotting and CCK-8, apoptosis, migration and contraction assays. Mice HS were analyzed by HE staining, PCR and western blotting after 56 days. RESULTS: ZEB1 was upregulated in HS tissue (2.0-fold; p < 0.001). ZEB1 knockdown inhibited HSFs activity (0.6 to 0.7-fold; p < 0.001), the expression of fibrotic markers (0.4 to 0.6-fold; p < 0.001) and ß-catenin, cyclinD1 and c-Myc expression (0.5-fold; p < 0.001). In mouse HS models, HS skin thickness was thinner (1.60 ± 0.40 mm vs. 4.04 ± 0.36 mm; p < 0.001) after ZEB1 knockdown. CONCLUSIONS: Knockdown of ZEB1 inhibits HS formation both in vitro and in vivo. However, this is an in vitro/mouse model and more validation is needed. CLINICAL RELEVANCE STATEMENT: The discovery of ZEB1 as a mediator of HS formation might be a potential therapeutic target in HS treatment.
RESUMO
One of the key targets of the inflammatory response in acute lung injury (ALI) is the human pulmonary micro-vascular endothelial cells (HPMVECs). Owing to its role in the activation of endothelial cells (ECs), CD40L figures prominently in the pathogenesis of ALI. Increasing evidences have showed that CD40L mediates inï¬ammatory effects on ECs, at least in part, by triggering NF-κB-dependent gene expression. However, the mechanisms of such signal transmission remain unknown. In this study, we found that CD40L stimulated the transactivation of NF-κB and expression of its downstream cytokines in a p38 MAPK-dependent mechanism in HPMVECs. In addition, CD40L-mediated inflammatory effects might be correlated with the activation of the IKK/IκB/NF-κB pathway and nuclear translocation of NF-κB, being accompanied by dynamic cytoskeletal changes. GEF-H1/RhoA signaling is best known for its role in regulating cytoskeletal rearrangements. An interesting finding was that CD40L induced the activation of p38 and IKK/IκB, and the subsequent transactivation of NF-κB via GEF-H1/RhoA signaling. The critical role of GEF-H1/RhoA in CD40L-induced inflammatory responses in the lung was further confirmed in GEF-H1 and RhoA knockout mouse models, both of which were established by adeno-associated virus (AAV)-mediated delivery of sgRNAs into mice with EC-specific Cas9 expression. These results taken together suggested that p38 and IKK/IκB-mediated signaling pathways, both of which lied downstream of GEF-H1/RhoA, may coordinately regulate the transactivation of NF-κB in CD40L-activated HPMVECs. These findings may help to determine key pharmacological targets of intervention for CD40L-activated inflammatory effects associated with ALI.
Assuntos
Lesão Pulmonar Aguda , NF-kappa B , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Ligante de CD40/metabolismo , Células Endoteliais/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Pulmão/metabolismo , Lesão Pulmonar Aguda/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/farmacologiaRESUMO
Barley (Hordeum vulgare L.) grass has been recognized as a functional food with a wide spectrum of health-promoting properties. Supplementation with barley grass has the potential to prevent chronic diseases, such as cancer. Here, we investigated whether barley grass could protect against hepatocellular carcinoma (HCC). Our data showed that administration of barley grass juice attenuates tumor development in a hydrodynamic gene delivery-induced model of HCC. The expression levels of the immune cell markers Ptprc and Adgre1 were upregulated in the barley grass juice-treated and normal groups, compared to those in the vehicle group in the HCC model. Immune cells (CD45+, F4/80+, and CLEC4F + iNOS + cells) infiltration in the liver increased following barley grass juice administration. Our results indicate that barley grass could be beneficial for HCC alleviation, partly by regulating immune cell infiltration. The ingredients of barley grass affect immune cell infiltration in HCC, and the detailed mechanism requires further study.
Assuntos
Carcinoma Hepatocelular , Hordeum , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/prevenção & controle , Hordeum/genética , Hidrodinâmica , Neoplasias Hepáticas/prevenção & controle , TransfecçãoRESUMO
OBJECTIVE: We aimed to construct a novel prognostic model based on N6-methyladenosine (m6A)-related autophagy genes for predicting the prognosis of lung squamous cell carcinoma (LUSC). METHODS: Gene expression profiles and clinical information of Patients with LUSC were downloaded from The Cancer Genome Atlas (TCGA) database. In addition, m6A- and autophagy-related gene profiles were obtained from TCGA and Human Autophagy Database, respectively. Pearson correlation analysis was performed to identify the m6A-related autophagy genes, and univariate Cox regression analysis was conducted to screen for genes associated with prognosis. Based on these genes, LASSO Cox regression analysis was used to construct a prognostic model. The corresponding prognostic score (PS) was calculated, and patients with LUSC were assigned to low- and high-risk groups according to the median PS value. An independent dataset (GSE37745) was used to validate the prognostic ability of the model. CIBERSORT was used to calculate the differences in immune cell infiltration between the high- and low-risk groups. RESULTS: Seven m6A-related autophagy genes were screened to construct a prognostic model: CASP4, CDKN1A, DLC1, ITGB1, PINK1, TP63, and EIF4EBP1. In the training and validation sets, patients in the high-risk group had worse survival times than those in the low-risk group; the areas under the receiver operating characteristic curves were 0.958 and 0.759, respectively. There were differences in m6A levels and immune cell infiltration between the high- and low-risk groups. CONCLUSIONS: Our prognostic model of the seven m6A-related autophagy genes had significant predictive value for LUSC; thus, these genes may serve as autophagy-related therapeutic targets in clinical practice.
Assuntos
Carcinoma de Células Escamosas , Neoplasias Pulmonares , Autofagia/genética , Biomarcadores Tumorais , Carcinoma de Células Escamosas/genética , Humanos , Pulmão , Neoplasias Pulmonares/genética , PrognósticoRESUMO
Although many researches have explored the prognostic factors associated with length of hospital stay (LOS) of adult burn patients, fewer reports concerning pediatric burn patients have been conducted. The present study employed pediatric burn data to identify factors related to LOS and developed a novel model to assess the possibility of requiring surgery. A total of 750 children admitted for burns met the criteria for enrollment. We have analyzed the medical records using multivariable linear regression and logistic regression. The pediatric patients were stratified into medical (nonsurgical) and surgical groups, respectively. The median LOS was 27.11 ± 17.91 days (range: 6-107 days). Following multiple linear regression, surgery (P < .001; 95% confidence interval [CI]: 6.485, 11.918), percent total BSA (%TBSA) (P < .001; 95% CI: 0.271, 0.459), days to surgery (P < .001; 95% CI: 0.349, 0.648), etiology (P < .001; 95% CI: -15.801, -9.422), infection (P < .001; 95% CI: 4.163, 8.329), and erythrocyte loss (P < .001; 95% CI: 1.923, 4.017) were significantly associated with LOS. After logistic regression, the percent full thickness (%FT) (P < .001; odds ratio [OR]: 2.358; 95% CI: 1.680, 3.311), infection (P < .001; OR: 2.935; 95% CI: 2.014, 4.278), and erythrocyte loss (P < .001; OR: 0.572; 95% CI: 0.470, 0.696) within 5 days postadmission were independently related to the probability of requiring surgery. In conclusion, in pediatric patients admitted with burn size of TBSA ≥20%, factors independently influencing LOS were surgery, %TBSA, days to surgery, etiology, erythrocyte loss, and infection. Furthermore, the pivotal predictors of probability requiring surgery were %FT, infection, and erythrocyte loss.
Assuntos
Queimaduras/cirurgia , Tempo de Internação/estatística & dados numéricos , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Probabilidade , PrognósticoRESUMO
Under septic conditions, Lipopolysaccharide (LPS)-induced apoptosis of lung vascular endothelial cells (ECs) triggers and aggravates acute lung injury (ALI), which so far has no effective therapeutic options. Genistein-3'-sodium sulphonate (GSS) is a derivative of native soy isoflavone, which has neuro-protective effects through its anti-apoptotic property. However, whether GSS protects against sepsis-induced lung vascular endothelial cell apoptosis and ALI has not been determined. In this study, we found that LPS-induced Myd88/NF-κB/BCL-2 signalling pathway activation and subsequent EC apoptosis were effectively down-regulated by GSS in vitro. Furthermore, GSS not only reversed the sepsis-induced BCL-2 changes in expression in mouse lungs but also blocked sepsis-associated lung vascular barrier disruption and ALI in vivo. Taken together, our results demonstrated that GSS might be a promising candidate for sepsis-induced ALI via its regulating effects on Myd88/NF-κB/BCL-2 signalling in lung ECs.
Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Genisteína/farmacologia , Lipopolissacarídeos/toxicidade , Pulmão/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Apoptose , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fitoestrógenos/farmacologiaRESUMO
PURPOSE: Point mutations of TP53 tumour suppressor are very rare in schwannomas. We aim to characterize the frequency of exonic copy-number changes of the gene in the tumour and to examine the association between TP53 alterations, phosphorylation status of p53 protein and clinical phenotypes. METHODS: The alterations of TP53 were screened by a combination of Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) in a total of 44 vestibular schwannomas. The mutation index (MI) in a tumour was defined as the number of exons mutated/ the number of exons tested. Phosphorylation status of p53 protein was investigated by immunoblotting and immunofluorescence. RESULTS: MLPA analysis showed single and multi-exon deletion mutations of TP53 in 65.7% of the cases. Comparisons of clinical features between mutated and non-mutated patients established an association of TP53 mutations with progressive phenotypes, including an earlier formation and a larger tumour. In addition, there were significant correlations between MI and both patients' age and tumour size. The Ser 392 phosphorylation level of p53 varied among tumours, and correlation analysis revealed an age-dependent phosphorylation pattern. The majority of tumours with hyperphosphorylated p53 were from mutated and young patients, suggesting an association of Ser392 phosphorylation with the mutational status of TP53 involved in the acceleration of tumour growth in young individuals. Moreover, Ser 392 phosphorylation contributed to a nuclear accumulation of p53 in schwannona cultures with TP53 mutation. CONCLUSIONS: An interplay between the mutation status of TP53, phosphorylation patterns and tumour behaviors might be established in the disease.
Assuntos
Biomarcadores Tumorais/análise , Variações do Número de Cópias de DNA , Mutação , Neurilemoma/genética , Neurilemoma/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Adolescente , Adulto , Fatores Etários , Idoso , Criança , Estudos de Coortes , Éxons , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Neurilemoma/patologia , Fosforilação , Prognóstico , Adulto JovemRESUMO
Background. Under septic conditions, LPS induced lung vascular endothelial cell (EC) injury, and the release of inflammatory mediator launches and aggravates acute lung injury (ALI). There are no effective therapeutic options for ALI. Genistein-3'-sodium sulfonate (GSS) is a derivative of native soy isoflavone, which exhibits neuroprotective effects via its antiapoptosis property. However, whether GSS protect against sepsis-induced EC injury and release of inflammatory mediators has not been determined. In this study, we found that GSS not only downregulated the levels of TNF-α and IL-6 in the lung and serum of mice in vivo but also inhibited the expression and secretion of TNF-α and IL-6 in ECs. Importantly, we also found that GSS blocked LPS-induced TNF-α and IL-6 expression in ECs via the Myd88/NF-κB signaling pathway. Taken together, our results demonstrated that GSS might be a promising candidate for sepsis-induced ALI via its regulating effects on inflammatory response in lung ECs.
Assuntos
Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Genisteína/uso terapêutico , Lipopolissacarídeos/toxicidade , Fármacos Neuroprotetores/uso terapêutico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Animais , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/patologia , Ensaio de Imunoadsorção Enzimática , Interleucina-6/sangue , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Inflammation is characterized by early influx of polymorphonuclear neutrophils (PMNs), followed by a second wave of monocyte recruitment. PMNs mediate monocyte recruitment via their release of heparin binding protein (HBP), which activates CCR2 (CC-chemokine receptor 2) on monocytes. However, the pathways for such signal transmission remain unknown. Accumulating evidences have highlighted the importance of leukocyte-endothelial cell interactions in the initiation of inflammation. In this study, an interesting finding is that HBP enhances the secretion of monocyte chemotactic protein 1(MCP-1), ligand of CCR2, from a third party, the endothelial cells (ECs). HBP-induced increase in MCP-1 production was demonstrated at the protein, mRNA and secretion levels. Exposure of ECs to HBP elicited rapid phosphorylation of FAK/PI3K/AKT and p38 MAPK/NF-κB signaling. MCP-1 levels were attenuated during the response to HBP stimulation by pretreatment with a FAK inhibitor (or siRNA), a PI3K inhibitor, an AKT inhibitor, a p38 inhibitor (or siRNA) and two NF-κB inhibitors. Additionally, pretreatment with inhibitors to FAK, PI3K and AKT led to a decrease in HBP-induced phosphorylation of p38/NF-κB axis. These results showed that HBP induced MCP-1 expression via a sequential activation of the FAK/PI3K/AKT pathway and p38 MAPK/NF-κB axis. Interestingly, the patterns of HBP regulation of the expression of the adhesion molecular VCAM-1 were similar to those seen in MCP-1 after pretreatment with inhibitors (or not). These findings may help to determine key pharmacological points of intervention, thus slowing the progress of inflammatory-mediated responses in certain diseases where inflammation is detrimental to the host.
Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas Sanguíneas/farmacologia , Proteínas de Transporte/farmacologia , Quimiocina CCL2/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quimiocina CCL2/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , NF-kappa B/metabolismo , Transdução de Sinais , Molécula 1 de Adesão de Célula Vascular/metabolismoRESUMO
Gram-negative bacterial lipopolysaccharide (LPS) induces a pathologic increase in lung vascular leakage under septic conditions. LPS-induced human pulmonary micro-vascular endothelial cell (HPMEC) apoptosis launches and aggravates micro-vascular hyper-permeability and acute lung injury (ALI). Previous studies show that the activation of intrinsic apoptotic pathway is vital for LPS-induced EC apoptosis. Yes-associated protein (YAP) has been reported to positively regulate intrinsic apoptotic pathway in tumor cells apoptosis. However, the potential role of YAP protein in LPS-induced HPMEC apoptosis has not been determined. In this study, we found that LPS-induced activation and nuclear accumulation of YAP accelerated HPMECs apoptosis. LPS-induced YAP translocation from cytoplasm to nucleus by the increased phosphorylation on Y357 resulted in the interaction between YAP and transcription factor P73. Furthermore, inhibition of YAP by small interfering RNA (siRNA) not only suppressed the LPS-induced HPMEC apoptosis but also regulated P73-mediated up-regulation of BAX and down-regulation of BCL-2. Taken together, our results demonstrated that activation of the YAP/P73/(BAX and BCL-2)/caspase-3 signaling pathway played a critical role in LPS-induced HPMEC apoptosis. Inhibition of the YAP might be a potential therapeutic strategy for lung injury under sepsis.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Lipopolissacarídeos/toxicidade , Fosfoproteínas/metabolismo , Transdução de Sinais , Núcleo Celular/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citoplasma/química , Humanos , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico , Fatores de Transcrição , Proteína Tumoral p73 , Proteínas de Sinalização YAPRESUMO
We aimed to evaluate the efficacy of combination of propranolol and sclerotherapy in treating parotid hemangiomas. Twenty-six parotid hemangiomas patients were subjected to combined treatment from January 2009 and June 2014. The effects of the therapy modality were evaluated. Nineteen patients were females and 7 were males. The median age of treatment initiation was 4.96 months. Twelve lesions were located on the left side parotid glands, while thirteen lesions affected the right side. One infant had bilateral lesions. One to six (average 2.04) injections were performed and the mean period for propranolol was 8.94 months. All the patients got satisfied aesthetic outcomes. No complications of propranolol or sclerotherapy occurred during the whole medication period. The study demonstrated that combination of propranolol and sclerotherapy was an effective and safe method for infantile parotid hemangiomas. Larger-scale studies should be performed to further investigate the long-term efficacy and results of the present combined method for infantile parotid hemangiomas.
RESUMO
BACKGROUND: Hypertrophic scars are manifestations of an abnormal process of tissue repair. Although photodynamic therapy is a promising treatment, details of the mechanisms underlying its inhibitory effects remain to be elucidated. METHODS: Fibroblasts were isolated from human hypertrophic scar specimens and subjected to photodynamic therapy; 5-aminolevulinic acid was used as a photosensitizer. The accumulation of 5-aminolevulinic acid-derived protoporphyrin IX was detected under fluorescence microscopy. The potential cytotoxicity of 5-aminolevulinic acid alone and with photodynamic therapy was measured by 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide. Hoechst 33258 staining and flow cytometry were conducted to search for clues to apoptosis. Protein and/or mRNA expression levels of apoptosis-related pathways and other hypertrophic scar pathogenesis-associated signaling were investigated by Western blot analysis and/or real-time polymerase chain reaction. RESULTS: Protoporphyrin IX accumulation peak was achieved at 1.0 mM 5-aminolevulinic acid. 5-Aminolevulinic acid ranging from 0 to 1.0 mM was demonstrated to be noncytotoxic but reduced cell viabilities in a dose-dependent manner with acid-based photodynamic therapy were demonstrated. Reduction of cell viability was attributed mainly to cell apoptosis and probably to mechanisms such as up-regulation of p53/p21, Bax/Bcl-2 ratio, and cleaved caspase-3. Concurrently, deregulation of transforming growth factor-ß1-mediated signaling, serving as another putative mechanism underlying hypertrophic scar formation, was found to be reversely modulated in response to acid-based photodynamic therapy. CONCLUSION: The p53-related apoptosis pathway and transforming growth factor-ß1-mediated signaling may be important factors used to predict and evaluate the treatment outcomes of 5-aminolevulinic acid-based photodynamic therapy used in hypertrophic scar patients. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, V.
Assuntos
Ácido Aminolevulínico/farmacologia , Apoptose/efeitos dos fármacos , Cicatriz Hipertrófica/tratamento farmacológico , Fibroblastos/efeitos dos fármacos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Ácido Aminolevulínico/uso terapêutico , Apoptose/fisiologia , Biomarcadores/metabolismo , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Cicatriz Hipertrófica/metabolismo , Fibroblastos/metabolismo , Citometria de Fluxo , Humanos , Técnicas In Vitro , Fármacos Fotossensibilizantes/uso terapêutico , Protoporfirinas/metabolismo , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Kimura's disease (KD) is an uncommon, chronic inflammatory disease characterized by tumor-like lesions in the soft tissue and lymph nodes and increased peripheral blood eosinophil counts and serum immunoglobulin E (IgE). Prednisone is widely used to treat the disease. Here, we reported a 59-year-old KD patient failed to response to prednisone. Leflunomide combined with methylprednisolone (Medrol) were carried out to treat KD and encouraging outcome was obtained during the medication and 1 year follow up period.
RESUMO
Propranolol has been widely used in treating infantile hemangiomas (IHs). But recurrence of IHs was found in some cases on cessation of propranolol treatment. The other is that Chinese individuals reacted to propranolol differently from American Whites. Whether the difference of sensitivity is due to the ß adrenoceptor (ß-AR) expression pattern of hemangioma initiating cells remains unclear. In the present study, we isolated hemangioma-derived stem cells (hemSCs) from proliferative IHs and analyzed the biological characteristics and ß-AR expression pattern of hemSCs by immunostaining, Western blotting and multilineage differentiation assay as well. We also tested the effects of propranolol on hemSCs by evaluating VEGF expression, proliferation and apoptosis related parameters. Our results indicated that CD133(+) hemSCs located pre-vascular in proiferative IH tissues. Both ß1 and ß2-AR were expressed, while ß2-AR was dominant on hemSCs. Propranolol at 100-150 µM inhibited proliferation of hemSCs, not did 50 µM. Propranolol down-regulated VEGF expression of hemSCs, instead of inducing apoptosis. The adipogenic potential was enhanced by propranolol. Therefore, our current results suggested propranolol could not induce apoptosis of hemSCs, but played a curative role though suppressing VEGF synthesis and enhancement of adipogenesis of hemSCs. Our results might partially provide the insight of mechanism of relapse in some cases on cessation of propranolol treatment.