Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Cancer ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831056

RESUMO

Despite the revolutionary impact of immune checkpoint blockade (ICB) in cancer treatment, accurately predicting patient responses remains challenging. Here, we analyzed a large dataset of 2,881 ICB-treated and 841 non-ICB-treated patients across 18 solid tumor types, encompassing a wide range of clinical, pathologic and genomic features. We developed a clinical score called LORIS (logistic regression-based immunotherapy-response score) using a six-feature logistic regression model. LORIS outperforms previous signatures in predicting ICB response and identifying responsive patients even with low tumor mutational burden or programmed cell death 1 ligand 1 expression. LORIS consistently predicts patient objective response and short-term and long-term survival across most cancer types. Moreover, LORIS showcases a near-monotonic relationship with ICB response probability and patient survival, enabling precise patient stratification. As an accurate, interpretable method using a few readily measurable features, LORIS may help improve clinical decision-making in precision medicine to maximize patient benefit. LORIS is available as an online tool at https://loris.ccr.cancer.gov/ .

2.
Cell Rep Med ; 5(6): 101610, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38897168

RESUMO

Small-cell lung cancer (SCLC) is the most fatal form of lung cancer. Intratumoral heterogeneity, marked by neuroendocrine (NE) and non-neuroendocrine (non-NE) cell states, defines SCLC, but the cell-extrinsic drivers of SCLC plasticity are poorly understood. To map the landscape of SCLC tumor microenvironment (TME), we apply spatially resolved transcriptomics and quantitative mass spectrometry-based proteomics to metastatic SCLC tumors obtained via rapid autopsy. The phenotype and overall composition of non-malignant cells in the TME exhibit substantial variability, closely mirroring the tumor phenotype, suggesting TME-driven reprogramming of NE cell states. We identify cancer-associated fibroblasts (CAFs) as a crucial element of SCLC TME heterogeneity, contributing to immune exclusion, and predicting exceptionally poor prognosis. Our work provides a comprehensive map of SCLC tumor and TME ecosystems, emphasizing their pivotal role in SCLC's adaptable nature, opening possibilities for reprogramming the TME-tumor communications that shape SCLC tumor states.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Microambiente Tumoral , Humanos , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/metabolismo , Células Neuroendócrinas/patologia , Células Neuroendócrinas/metabolismo , Feminino , Masculino , Prognóstico
3.
Cancers (Basel) ; 15(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37835579

RESUMO

Chimeric antigen receptor (CAR) T cell therapies have yielded transformative clinical successes for patients with blood tumors, but their full potential remains to be unleashed against solid tumors. One challenge is finding selective targets, which we define intuitively to be cell surface proteins that are expressed widely by cancer cells but minimally by healthy cells in the tumor microenvironment and other normal tissues. Analyzing patient tumor single-cell transcriptomics data, we first defined and quantified selectivity and safety scores of existing CAR targets for indications in which they are in clinical trials or approved. We then sought new candidate cell surface CAR targets that have better selectivity and safety scores than those currently being tested. Remarkably, in almost all cancer types, we could not find such better targets, testifying to the near optimality of the current target space. However, in human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSC), for which there is currently a dearth of existing CAR targets, we identified a total of twenty candidate novel CAR targets, five of which have both superior selectivity and safety scores. These newly identified cell surface targets lay a basis for future investigations that may lead to better CAR treatments in HNSC.

4.
NPJ Precis Oncol ; 7(1): 54, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270587

RESUMO

Identifying patients that are likely to respond to cancer immunotherapy is an important, yet highly challenging clinical need. Using 3139 patients across 17 different cancer types, we comprehensively studied the ability of two common copy-number alteration (CNA) scores-the tumor aneuploidy score (AS) and the fraction of genome single nucleotide polymorphism encompassed by copy-number alterations (FGA)-to predict survival following immunotherapy in both pan-cancer and individual cancer types. First, we show that choice of cutoff during CNA calling significantly influences the predictive power of AS and FGA for patient survival following immunotherapy. Remarkably, by using proper cutoff during CNA calling, AS and FGA can predict pan-cancer survival following immunotherapy for both high-TMB and low-TMB patients. However, at the individual cancer level, our data suggest that the use of AS and FGA for predicting immunotherapy response is currently limited to only a few cancer types. Therefore, larger sample sizes are needed to evaluate the clinical utility of these measures for patient stratification in other cancer types. Finally, we propose a simple, non-parameterized, elbow-point-based method to help determine the cutoff used for calling CNAs.

5.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36789425

RESUMO

The immune state of tumor microenvironment is crucial for determining immunotherapy response but is not readily accessible. Here we investigate if we can infer the tumor immune state from the blood and further predict immunotherapy response. First, we analyze a dataset of head and neck squamous cell carcinoma (HNSCC) patients with matched scRNA-Seq of peripheral blood mononuclear cells (PBMCs) and tumor tissues. We find that the tumor immune cell fractions of different immune cell types and many of the genes they express can be inferred from the matched PBMC scRNA-Seq. Second, analyzing another HNSCC dataset with PBMC scRNA-Seq and immunotherapy response, we find that the inferred ratio between tumor memory B and regulatory T cell fractions is predictive of immunotherapy response and is superior to the well-established cytolytic and exhausted T-cell signatures. Overall, these results showcase the potential of scRNA-Seq liquid biopsies in cancer immunotherapy, calling for their larger-scale testing. Significance: This head and neck cancer study demonstrates the potential of using blood single-cell transcriptomics to (1) infer the tumor immune status and (2) predict immunotherapy response from the tumor immune status inferred from blood. These results showcase the potential of single-cell transcriptomics liquid biopsies for further advancing personalized cancer immunotherapy.

6.
Plant Methods ; 16: 92, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32647532

RESUMO

BACKGROUND: Photosynthesis of reproductive organs in C3 cereals is generally regarded as important to crop yield. Whereas, photosynthetic characteristics of reproductive organs are much less understood as compared to leaf photosynthesis, mainly due to methodological limitations. To date, many indirect methods have been developed to study photosynthesis of reproductive organs and its contribution to grain yield, such as organ shading, application of herbicides and photosynthetic measurement of excised organs or tissues, which might be intrusive and cause biases. Thus, a robust and in situ approach needs to be developed. RESULTS: Here we report the development of a custom-built panicle photosynthesis chamber (P-chamber), which can be connected to standard infrared gas analyzers to study photosynthetic/respiratory rate of a rice panicle. With the P-chamber, we measured panicle photosynthetic characteristics of seven high-yielding elite japonica, japonica-indica hybrid and indica rice cultivars. Results show that, (1) rice panicle is photosynthetically active during grain filling, and there are substantial inter-cultivar variations in panicle photosynthetic and respiratory rates, no matter on a whole panicle basis, on an area basis or on a single spikelet basis; (2) among the seven testing cultivars, whole-panicle gross photosynthetic rates are 17-54 nmol s-1 5 days after heading under photon flux density (PFD) of 2000 µmol (photons) m-2 s-1, which represent some 20-38% of that of the corresponding flag leaves; (3) rice panicle photosynthesis has higher apparent CO2 compensation point, light compensation point and apparent CO2 saturation point, as compared to that of a typical leaf; (4) there is a strong and significant positive correlation between gross photosynthetic rate 5 days after heading on a single spikelet basis and grain setting rate at harvest (Pearson correlation coefficient r = 0.93, p value < 0.0001). CONCLUSIONS: Rice panicle gross photosynthesis is significant, has great natural variation, and plays an underappreciated role in grain yield formation. The P-Chamber can be used as a tool to study in situ photosynthetic characteristics of irregular non-foliar plant organs, such as ears, culms, leaf sheaths, fruits and branches, which is a relatively less explored area in current cereal breeding community.

7.
Int J Mol Sci ; 21(14)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668582

RESUMO

Respiration is a major plant physiological process that generates adenosine triphosphate (ATP) to support the various pathways involved in the plant growth and development. After decades of focused research on basic mechanisms of respiration, the processes and major proteins involved in respiration are well elucidated. However, much less is known about the natural variation of respiration. Here we conducted a survey on the natural variation of leaf dark respiration (Rd) in a global rice minicore diversity panel and applied a genome-wide association study (GWAS) in rice (Oryza sativa L.) to determine candidate loci associated with Rd. This rice minicore diversity panel consists of 206 accessions, which were grown under both growth room (GR) and field conditions. We found that Rd shows high single-nucleotide polymorphism (SNP) heritability under GR and it is significantly affected by genotype-environment interactions. Rd also exhibits strong positive correlation to the leaf thickness and chlorophyll content. GWAS results of Rd collected under GR and field show an overlapped genomic region in the chromosome 3 (Chr.3), which contains a lead SNP (3m29440628). There are 12 candidate genes within this region; among them, three genes show significantly higher expression levels in accessions with high Rd. Particularly, we observed that the LRK1 gene, annotated as leucine rich repeat receptor kinase, was up-regulated four times. We further found that a single significantly associated SNPs at the promoter region of LRK1, was strongly correlated with the mean annual temperature of the regions from where minicore accessions were collected. A rice lrk1 mutant shows only ~37% Rd of that of WT and retarded growth following exposure to 35 °C for 30 days, but only 24% reduction in growth was recorded under normal temperature (25 °C). This study demonstrates a substantial natural variation of Rd in rice and that the LRK1 gene can regulate leaf dark respiratory fluxes, especially under high temperature.


Assuntos
Genes de Plantas , Oryza/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas Quinases/genética , Sequência de Aminoácidos , Sistemas CRISPR-Cas , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Respiração Celular , Clorofila/metabolismo , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Escuridão , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Efeito Estufa , Haplótipos/genética , Temperatura Alta , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/efeitos da radiação , Fotossíntese , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/fisiologia , Polimorfismo de Nucleotídeo Único , Proteínas Quinases/fisiologia , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA