Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3711, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349287

RESUMO

Only 60-75% of conventional kidney stone surgeries achieve complete stone-free status. Up to 30% of patients with residual fragments <2 mm in size experience subsequent stone-related complications. Here we demonstrate a stone retrieval technology in which fragments are rendered magnetizable with a magnetic hydrogel so that they can be easily retrieved with a simple magnetic tool. The magnetic hydrogel facilitates robust in vitro capture of stone fragments of clinically relevant sizes and compositions. The hydrogel components exhibit no cytotoxicity in cell culture and only superficial effects on ex vivo human urothelium and in vivo mouse bladders. Furthermore, the hydrogel demonstrates antimicrobial activity against common uropathogens on par with that of common antibiotics. By enabling the efficient retrieval of kidney stone fragments, our method can lead to improved stone-free rates and patient outcomes.


Assuntos
Cálculos Renais , Ureteroscopia , Animais , Camundongos , Humanos , Hidrogéis , Cálculos Renais/cirurgia , Magnetismo , Fenômenos Magnéticos
2.
Urol Clin North Am ; 48(1): 151-160, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33218590

RESUMO

With the advent of electronic medical records and digitalization of health care over the past 2 decades, artificial intelligence (AI) has emerged as an enabling tool to manage complex datasets and deliver streamlined data-driven patient care. AI algorithms have the ability to extract meaningful signal from complex datasets through an iterative process akin to human learning. Through advancements over the past decade in deep learning, AI-driven innovations have accelerated applications in health care. Herein, the authors explore the development of these emerging AI technologies, focusing on the application of AI to endourology and robotic surgery.


Assuntos
Inteligência Artificial/tendências , Neoplasias da Próstata , Procedimentos Cirúrgicos Robóticos/tendências , Doenças Urológicas , Procedimentos Cirúrgicos Urológicos/tendências , Algoritmos , Inteligência Artificial/história , Endoscopia , História do Século XX , História do Século XXI , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Imageamento por Ressonância Magnética Multiparamétrica , Imagem Óptica , Prognóstico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/cirurgia , Procedimentos Cirúrgicos Robóticos/instrumentação , Sistema Urinário/diagnóstico por imagem , Sistema Urinário/cirurgia , Doenças Urológicas/diagnóstico , Doenças Urológicas/cirurgia
3.
Eur Urol ; 76(6): 714-718, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31537407

RESUMO

Adequate tumor detection is critical in complete transurethral resection of bladder tumor (TURBT) to reduce cancer recurrence, but up to 20% of bladder tumors are missed by standard white light cystoscopy. Deep learning augmented cystoscopy may improve tumor localization, intraoperative navigation, and surgical resection of bladder cancer. We aimed to develop a deep learning algorithm for augmented cystoscopic detection of bladder cancer. Patients undergoing cystoscopy/TURBT were recruited and white light videos were recorded. Video frames containing histologically confirmed papillary urothelial carcinoma were selected and manually annotated. We constructed CystoNet, an image analysis platform based on convolutional neural networks, for automated bladder tumor detection using a development dataset of 95 patients for algorithm training and five patients for testing. Diagnostic performance of CystoNet was validated prospectively in an additional 54 patients. In the validation dataset, per-frame sensitivity and specificity were 90.9% (95% confidence interval [CI], 90.3-91.6%) and 98.6% (95% CI, 98.5-98.8%), respectively. Per-tumor sensitivity was 90.9% (95% CI, 90.3-91.6%). CystoNet detected 39 of 41 papillary and three of three flat bladder cancers. With high sensitivity and specificity, CystoNet may improve the diagnostic yield of cystoscopy and efficacy of TURBT. PATIENT SUMMARY: Conventional cystoscopy has recognized shortcomings in bladder cancer detection, with implications for recurrence. Cystoscopy augmented with artificial intelligence may improve cancer detection and resection.


Assuntos
Carcinoma de Células de Transição/patologia , Cistoscopia/métodos , Aprendizado Profundo , Neoplasias da Bexiga Urinária/patologia , Carcinoma de Células de Transição/cirurgia , Humanos , Neoplasias da Bexiga Urinária/cirurgia
4.
Urol Oncol ; 37(11): 809.e1-809.e8, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31537485

RESUMO

INTRODUCTION: Surgical management of penile cancer depends on accurate margin assessment and staging. Advanced optical imaging technologies may improve penile biopsy and organ-sparing treatment. We evaluated the feasibility of confocal laser endomicroscopy for intraoperative assessment of benign and malignant penile tissue. PATIENTS AND METHODS: With institutional review board approval, 11 patients were recruited, 9 with suspected penile cancer, and 2 healthy controls. Confocal laser endomicroscopy using a 2.6-mm fiber-optic probe was performed at 1 or 2 procedures on all subjects, for 13 imaging procedures. Fluorescein was administered intravenously approximately 3 minutes prior to imaging for contrast. Video sequences from in vivo (n = 12) and ex vivo (n = 6) imaging were obtained of normal glans, suspicious lesions, and surgical margins. Images were processed, annotated, characterized, and correlated with standard hematoxylin and eosin histopathology. RESULTS: No adverse events related to imaging were reported. Distinguishing features of benign and malignant penile tissue could be identified by confocal laser endomicroscopy. Normal skin had cells of uniform size and shape, with distinct cytoplasmic membranes consistent with squamous epithelium. Malignant lesions were characterized by disorganized, crowded cells of various size and shape, lack of distinct cytoplasmic membranes, and hazy, moth-eaten appearance. The transition from normal to abnormal squamous epithelium could be identified. CONCLUSIONS: We report the initial feasibility of intraoperative confocal laser endomicroscopy for penile cancer optical biopsy. Pending further evaluation, confocal laser endomicroscopy could serve as an adjunct or replacement to conventional frozen section pathology for management of penile cancer.


Assuntos
Neoplasias Penianas/patologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Viabilidade , Humanos , Biópsia Guiada por Imagem , Período Intraoperatório , Masculino , Microscopia Confocal , Neoplasias Penianas/cirurgia
5.
Bladder Cancer ; 3(3): 149-159, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28824942

RESUMO

Transurethral resection of bladder tumor (TURBT) under white light cystoscopy (WLC) is the cornerstone for the diagnosis, removal and local staging of non-muscle invasive bladder cancer (NMIBC). Despite technological improvements over the decades, significant shortcomings remain with WLC for tumor detection, thereby impacting the surgical quality and contributing to tumor recurrence and progression. Enhanced cystoscopy modalities such as blue light cystoscopy (BLC) and narrow band imaging (NBI) aid resections by highlighting tumors that might be missed on WLC. Optical biopsy technologies such as confocal laser endomicroscopy (CLE) and optical coherence tomography (OCT) characterize tissue in real-time to ensure a more thorough resection. New resection techniques, particularly en bloc resection, are actively under investigation to improve the overall quality of resections and aid pathologic interpretation. Moreover, new image processing computer algorithms may improve perioperative planning and longitudinal follow-up. Clinical translation of molecular imaging agents is also on the horizon to improve optical diagnosis of bladder cancer. This review focuses on emerging technologies that can impact the quality of TURBT to improve the overall management of NMIBC.

6.
Sci Transl Med ; 6(260): 260ra148, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25355698

RESUMO

A combination of optical imaging technologies with cancer-specific molecular imaging agents is a potentially powerful strategy to improve cancer detection and enable image-guided surgery. Bladder cancer is primarily managed endoscopically by white light cystoscopy with suboptimal diagnostic accuracy. Emerging optical imaging technologies hold great potential for improved diagnostic accuracy but lack imaging agents for molecular specificity. Using fluorescently labeled CD47 antibody (anti-CD47) as molecular imaging agent, we demonstrated consistent identification of bladder cancer with clinical grade fluorescence imaging systems, confocal endomicroscopy, and blue light cystoscopy in fresh surgically removed human bladders. With blue light cystoscopy, the sensitivity and specificity for CD47-targeted imaging were 82.9 and 90.5%, respectively. We detected variants of bladder cancers, which are diagnostic challenges, including carcinoma in situ, residual carcinoma in tumor resection bed, recurrent carcinoma following prior intravesical immunotherapy with Bacillus Calmette-Guérin (BCG), and excluded cancer from benign but suspicious-appearing mucosa. CD47-targeted molecular imaging could improve diagnosis and resection thoroughness for bladder cancer.


Assuntos
Antígeno CD47/imunologia , Endoscopia , Neoplasias da Bexiga Urinária/diagnóstico , Antígeno CD47/genética , Humanos , RNA Mensageiro/genética , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/cirurgia
7.
J Vis Exp ; (71): e4409, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23354133

RESUMO

Probe-based confocal laser endomicroscopy (CLE) is an emerging optical imaging technology that enables real-time in vivo microscopy of mucosal surfaces during standard endoscopy. With applications currently in the respiratory and gastrointestinal tracts, CLE has also been explored in the urinary tract for bladder cancer diagnosis. Cellular morphology and tissue microarchitecture can be resolved with micron scale resolution in real time, in addition to dynamic imaging of the normal and pathological vasculature. The probe-based CLE system (Cellvizio, Mauna Kea Technologies, France) consists of a reusable fiberoptic imaging probe coupled to a 488 nm laser scanning unit. The imaging probe is inserted in the working channels of standard flexible and rigid endoscopes. An endoscope-based CLE system (Optiscan, Australia), in which the confocal endomicroscopy functionality is integrated onto the endoscope, is also used in the gastrointestinal tract. Given the larger scope diameter, however, application in the urinary tract is currently limited to ex vivo use. Confocal image acquisition is done through direct contact of the imaging probe with the target tissue and recorded as video sequences. As in the gastrointestinal tract, endomicroscopy of the urinary tract requires an exogenenous contrast agent-most commonly fluorescein, which can be administered intravenously or intravesically. Intravesical administration is a well-established method to introduce pharmacological agents locally with minimal systemic toxicity that is unique to the urinary tract. Fluorescein rapidly stains the extracellular matrix and has an established safety profile. Imaging probes of various diameters enable compatibility with different caliber endoscopes. To date, 1.4 and 2.6 mm probes have been evaluated with flexible and rigid cystoscopy. Recent availability of a < 1 mm imaging probe opens up the possibility of CLE in the upper urinary tract during ureteroscopy. Fluorescence cystoscopy (i.e. photodynamic diagnosis) and narrow band imaging are additional endoscope-based optical imaging modalities that can be combined with CLE to achieve multimodal imaging of the urinary tract. In the future, CLE may be coupled with molecular contrast agents such as fluorescently labeled peptides and antibodies for endoscopic imaging of disease processes with molecular specificity.


Assuntos
Cistoscopia/métodos , Microscopia Confocal/métodos , Sistema Urinário/citologia , Doenças Urológicas/diagnóstico , Cistoscopia/instrumentação , Fluoresceína , Corantes Fluorescentes , Humanos , Microscopia Confocal/instrumentação , Sistema Urinário/patologia , Doenças Urológicas/patologia
8.
J Endourol ; 27(5): 598-603, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23072435

RESUMO

BACKGROUND AND PURPOSE: Emerging optical imaging technologies such as confocal laser endomicroscopy (CLE) hold promise in improving bladder cancer diagnosis. The purpose of this study was to determine the interobserver agreement of image interpretation using CLE for bladder cancer. METHODS: Experienced CLE urologists (n=2), novice CLE urologists (n=6), pathologists (n=4), and nonclinical researchers (n=5) were recruited to participate in a 2-hour computer-based training consisting of a teaching and validation set of intraoperative white light cystoscopy (WLC) and CLE video sequences from patients undergoing transurethral resection of bladder tumor. Interobserver agreement was determined using the κ statistic. RESULTS: Of the 31 bladder regions analyzed, 19 were cancer and 12 were benign. For cancer diagnosis, experienced CLE urologists had substantial agreement for both CLE and WLC+CLE (90%, κ 0.80) compared with moderate agreement for WLC alone (74%, κ 0.46), while novice CLE urologists had moderate agreement for CLE (77%, κ 0.55), WLC (78%, κ 0.54), and WLC+CLE (80%, κ 0.59). Pathologists had substantial agreement for CLE (81%, κ 0.61), and nonclinical researchers had moderate agreement (77%, κ 0.49) in cancer diagnosis. For cancer grading, experienced CLE urologists had fair to moderate agreement for CLE (68%, κ 0.64), WLC (74%, κ 0.67), and WLC+CLE (53%, κ 0.33), as did novice CLE urologists for CLE (53%, κ 0.39), WLC (66%, κ 0.50), and WLC+CLE (61%, κ 0.49). Pathologists (65%, κ 0.55) and nonclinical researchers (61%, κ 0.56) both had moderate agreement for CLE in cancer grading. CONCLUSIONS: CLE is an adoptable technology for cancer diagnosis in novice CLE observers after a short training with moderate interobserver agreement and diagnostic accuracy similar to WLC alone. Experienced CLE observers may be capable of achieving substantial levels of agreement for cancer diagnosis that is higher than with WLC alone.


Assuntos
Cistoscopia , Microscopia Confocal/estatística & dados numéricos , Neoplasias da Bexiga Urinária/patologia , Humanos , Microscopia Confocal/métodos , Variações Dependentes do Observador , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA