Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093981

RESUMO

DNA methyltransferase inhibitor decitabine plus anti-PD-1 (DP) combination therapy was effective in relapsed/refractory classic Hodgkin lymphoma (cHL). However, a subset of patients experienced primary resistance or relapse/progression after DP therapy. In this study, we evaluated the efficacy and safety of a triplet regimen consisting of the histone deacetylase inhibitor chidamide, decitabine and anti-PD-1 camrelizumab (CDP) in 52 patients with relapsed/refractory cHL who had previously received DP therapy (NCT04233294). CDP treatment was well-tolerate and resulted in an objective response rate of 94% (95% CI, 84-99%), with 50% (95% CI, 36-64%) of patients achieving complete response (CR). Notably, all patients who were recalcitrant to previous DP treatment exhibited therapeutic responses following CDP therapy, although their CR rate was lower compared to patients responsive to prior DP. Overall, the median progression-free survival following CDP therapy was 29.4 months. Through single-cell RNA sequencing of pre-treatment and on-treatment cHL tumor biopsies, we observed the heterogeneity of rare malignant Hodgkin Reed/Sternberg (HRS)-like cells. The classical CD30+ HRS-like cells interacted with the abundant immunosuppressive IL21+CD4+ T helper cells, forming a positive feedback loop that supported their survival. In contrast, the CD30- HRS-like cell population showed potential resistance to anti-PD-1 immunotherapy. CDP treatment promoted the activation of diverse tumor-reactive CD8+ T cells and suppressed the proliferation of IL21+CD4+ T cells by inhibiting STAT1/3 signaling, thereby alleviating their immunosuppressive effects. These findings provide insights into the cHL microenvironment that contributes to anti-PD-1 resistance and highlight the therapeutic effectiveness of dual epi-immunotherapy in overcoming immunotherapy resistance.

2.
Cell Death Dis ; 14(8): 563, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633993

RESUMO

Sensitivity to platinum-based combination chemotherapy is associated with a favorable prognosis in patients with non-small cell lung cancer (NSCLC). Here, our results obtained from analyses of the Gene Expression Omnibus database of NSCLC patients showed that cartilage acidic protein 1 (CRTAC1) plays a role in the response to platinum-based chemotherapy. Overexpression of CRTAC1 increased sensitivity to cisplatin in vitro, whereas knockdown of CRTAC1 decreased chemosensitivity of NSCLC cells. In vivo mouse experiments showed that CRTAC1 overexpression increased the antitumor effects of cisplatin. CRTAC1 overexpression promoted NFAT transcriptional activation by increasing intracellular Ca2+ levels, thereby inducing its regulated STUB1 mRNA transcription and protein expression, accelerating Akt1 protein degradation and, in turn, enhancing cisplatin-induced apoptosis. Taken together, the present results indicate that CRTAC1 overexpression increases the chemosensitivity of NSCLC to cisplatin treatment by inducing Ca2+-dependent Akt1 degradation and apoptosis, suggesting the potential of CRTAC1 as a biomarker for predicting cisplatin chemosensitivity. Our results further reveal that modulating the expression of CRTAC1 could be a new strategy for increasing the efficacy of cisplatin in chemotherapy of NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Cálcio , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Platina , Humanos
3.
ACS Nano ; 17(9): 8483-8498, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37097065

RESUMO

Cancer theranostics that combines cancer diagnosis and therapy is a promising approach for personalized cancer treatment. However, current theranostic strategies suffer from low imaging sensitivity for visualization and an inability to target the diseased tissue site with high specificity, thus hindering their translation to the clinic. In this study, we have developed a tumor microenvironment-responsive hybrid theranostic agent by grafting water-soluble, low-fouling fluoropolymers to pH-responsive zeolitic imidazolate framework-8 (ZIF-8) nanoparticles by surface-initiated RAFT polymerization. The conjugation of the fluoropolymers to ZIF-8 nanoparticles not only allows sensitive in vivo visualization of the nanoparticles by 19F MRI but also significantly prolongs their circulation time in the bloodstream, resulting in improved delivery efficiency to tumor tissue. The ZIF-8-fluoropolymer nanoparticles can respond to the acidic tumor microenvironment, leading to progressive degradation of the nanoparticles and release of zinc ions as well as encapsulated anticancer drugs. The zinc ions released from the ZIF-8 can further coordinate to the fluoropolymers to switch the hydrophilicity and reverse the surface charge of the nanoparticles. This transition in hydrophilicity and surface charge of the polymeric coating can reduce the "stealth-like" nature of the agent and enhance specific uptake by cancer cells. Hence, these hybrid nanoparticles represent intelligent theranostics with highly sensitive imaging capability, significantly prolonged blood circulation time, greatly improved accumulation within the tumor tissue, and enhanced anticancer therapeutic efficiency.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Humanos , Polímeros de Fluorcarboneto/uso terapêutico , Estruturas Metalorgânicas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanopartículas/uso terapêutico , Imageamento por Ressonância Magnética , Interações Hidrofóbicas e Hidrofílicas , Zinco/uso terapêutico , Íons , Microambiente Tumoral
4.
J Clin Invest ; 133(7)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36853831

RESUMO

CD8+ exhausted T cells (Tex) are heterogeneous. PD-1 inhibitors reinvigorate progenitor Tex, which subsequently differentiate into irresponsive terminal Tex. The ability to maintain a capacity for durable proliferation of progenitor Tex is important, but the mechanism remains unclear. Here, we showed CD8+ progenitor Tex pretreated with decitabine, a low-dose DNA demethylating agent, had enhanced proliferation and effector function against tumors after anti-PD-1 treatment in vitro. Treatment with decitabine plus anti-PD-1 promoted the activation and expansion of tumor-infiltrated CD8+ progenitor Tex and efficiently suppressed tumor growth in multiple tumor models. Transcriptional and epigenetic profiling of tumor-infiltrated T cells demonstrated that the combination of decitabine plus anti-PD-1 markedly elevated the clonal expansion and cytolytic activity of progenitor Tex compared with anti-PD-1 monotherapy and restrained CD8+ T cell terminal differentiation. Strikingly, decitabine plus anti-PD-1 sustained the expression and activity of the AP-1 transcription factor JunD, which was reduced following PD-1 blockade therapy. Downregulation of JunD repressed T cell proliferation, and activation of JNK/AP-1 signaling in CD8+ T cells enhanced the antitumor capacity of PD-1 inhibitors. Together, epigenetic agents remodel CD8+ progenitor Tex populations and improve responsiveness to anti-PD-1 therapy.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Decitabina/farmacologia , Fator de Transcrição AP-1/metabolismo , Linfócitos T CD8-Positivos , Neoplasias/terapia , Proliferação de Células
5.
Biomacromolecules ; 23(9): 3866-3874, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35977724

RESUMO

Gold nanorods (GNRs) are widely used in various biomedical applications such as disease imaging and therapy due to their unique plasmonic properties. To improve their bioavailability, GNRs often need to be coated with hydrophilic polymers so as to impart stealth properties. Poly(ethylene glycol) (PEG) has been long used as such a coating material for GNRs. However, there is increasing acknowledgement that the amphiphilic nature of PEG facilitates its interaction with protein molecules, leading to immune recognition and consequent side effects. This has motivated the search for new classes of low-fouling polymers with high hydrophilicity as alternative low-fouling surface coating materials for GNRs. Herein, we report the synthesis, characterization, and application of GNRs coated with highly hydrophilic sulfoxide-containing polymers. We investigated the effect of the sulfoxide polymer coating on the cellular uptake and in vivo circulation time of the GNRs and compared these properties with pegylated GNR counterparts. The photothermal effect and photoacoustic imaging of these polymer-coated GNRs were also explored, and the results show that these GNRs are promising as nanotheranostic particles for the treatment of cancer.


Assuntos
Ouro , Nanotubos , Ouro/farmacologia , Polímeros , Medicina de Precisão , Sulfóxidos
6.
Oncogene ; 40(48): 6579-6589, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34615995

RESUMO

Metastasis of bladder cancer is a complex process and has been associated with poor clinical outcomes. However, the mechanisms of bladder cancer metastasis remain largely unknown. The present study found that the long noncoding RNA lnc00892 was significantly downregulated in bladder cancer tissues, with low lnc00892 expression associated with poor prognosis of bladder cancer patients. Lnc00892 significantly inhibited the migration, invasion, and metastasis of bladder cancer cells in vitro and in vivo. In-depth analysis showed that RhoA/C acted downstream of lnc00892 to inhibit bladder cancer metastasis. Mechanistically, lnc00892 reduces nucleolin gene transcription by competitively binding the promoter of nucleolin with c-Jun, thereby inhibiting nucleolin-mediated stabilization of RhoA/RhoC mRNA. Taken together, these findings provide novel insights into understanding the mechanisms of bladder cancer metastasis and suggest that lnc00892 can serve as a potential therapeutic target in patients with invasive bladder cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Neoplasias da Bexiga Urinária/patologia , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína de Ligação a GTP rhoC/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas c-jun/genética , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína rhoA de Ligação ao GTP/genética , Proteína de Ligação a GTP rhoC/genética , Nucleolina
7.
Clin Transl Med ; 11(10): e602, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709763

RESUMO

BACKGROUND: MicroRNAs (miRNAs), the key regulator of gene expression, and N6-methyladenosine (m6A) RNA modification play a significant role in tumour progression. However, regulation of m6A-modified mRNAs by miRNAs in colorectal cancer (CRC), and its effect on progression of CRC, remains to be investigated. METHODS: Expression of miR-6125 and YTH Domain-Containing Family Protein 2 (YTHDF2) was detected by western blotting and immunohistochemistry. The effects of miR-6125 and YTHDF2 on proliferative capacity of CRC cells were analysed using soft agar, ATP, CCK8 and EdU assays, and in animal experiments. RESULTS: MiR-6125 expression was downregulated markedly in CRC, and expression correlated negatively with tumour size and prognosis. MiR-6125 targeted the 3'-UTR of YTHDF2 and downregulated the YTHDF2 protein, thereby increasing the stability of m6A-modified glycogen synthase kinase 3 beta (GSK3ß) mRNA. Increased GSK3ß protein levels inhibited the expression of Wnt/ß-catenin/Cyclin D1 pathway-related proteins, leading to G0-G1 phase arrest and ultimately inhibiting the proliferation of CRC cells. CONCLUSIONS: MiR-6125 regulates YTHDF2 and thus plays a critical role in regulating the Wnt/ß-catenin pathway, thereby affecting the growth of CRC. Collectively, these results suggest that miR-6125 and YTHDF2 are potential targets for treatment of CRC.


Assuntos
Adenosina/análogos & derivados , Neoplasias Colorretais/genética , Regulação para Baixo/genética , Glicogênio Sintase Quinase 3 beta/genética , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Adenosina/genética , Adenosina/metabolismo , Animais , Neoplasias Colorretais/metabolismo , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo
8.
Front Oncol ; 11: 673223, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34094975

RESUMO

Transcribed ultraconserved regions (T-UCRs) are a new type of long non-coding RNA, and the UCR has 481 segments longer than 200 base pairs that are 100% conserved between humans, rats, and mice. T-UCRs involved in colorectal cancer (CRC) have not been studied in detail. We performed T-UCR microarray analysis and found that uc.77- was significantly downregulated in CRC tissues and cell lines. Ectopic expression of uc.77- significantly inhibited the proliferation of CRC cells in vitro and the growth of xenograft tumors in nude mice in vivo. Mechanistic studies showed that uc.77- competed with FBXW8 mRNA for binding to microRNA (miR)-4676-5p through a competing endogenous RNA mechanism and inhibited the proliferation of CRC cells by negatively regulating CDK4. The present findings highlight the role of the uc.77-/miR-4676-5p/FBXW8 axis in CRC and identify uc.77- as a potential novel target for the treatment of CRC.

9.
Anal Chem ; 87(4): 2504-10, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25602628

RESUMO

Investigating the molecular changes of cancer cell nucleus with drugs treatment is crucial for the design of new anticancer drugs, the development of novel diagnostic strategies, and the advancement of cancer therapy efficiency. In order to better understand the action effects of drugs, accurate location and in situ acquisition of the molecular information of the cell nuclei are necessary. In this work, we report a microspectroscopic technique called dark-field and fluorescence coimaging assisted surface-enhanced Raman scattering (SERS) spectroscopy, combined with nuclear targeting nanoprobes, to in situ study Soma Gastric Cancer (SGC-7901) cell nuclei treated with two model drugs, e.g., DNA binder (Hoechst33342) and anticancer drug (doxorubicin, Dox) via spectral analysis at the molecular level. Nuclear targeting nanoprobes with an assembly structure of thiol-modified polyethylene glycol polymers (PEG) and nuclear localizing signal peptides (NLS) around gold nanorods (AuNRs) were prepared to achieve the amplified SERS signals of biomolecules in the cell nuclei. With the assistance of dark field/fluorescence imaging with simultaneous location, in situ SERS spectra in one cell nucleus were measured and analyzed to disclose the effects of Hoechst33342 and Dox on main biomolecules in the cell nuclei. The experimental results show that this method possesses great potential to investigate the targets of new anticancer drugs and the real-time monitoring of the dynamic changes of cells caused by exogenous molecules.


Assuntos
Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Núcleo Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Análise Espectral Raman , Sobrevivência Celular/efeitos dos fármacos , Fluorescência , Ouro/química , Humanos , Nanopartículas Metálicas/química , Neoplasias/metabolismo , Relação Estrutura-Atividade , Propriedades de Superfície , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA