Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genetics ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38797871

RESUMO

Nuclear migration through narrow constrictions is important for development, metastasis, and proinflammatory responses. Studies performed in tissue culture cells have implicated linker of nucleoskeleton and cytoskeleton (LINC) complexes, microtubule motors, the actin cytoskeleton, and nuclear envelope repair machinery as important mediators of nuclear movements through constricted spaces. However, little is understood about how these mechanisms operate to move nuclei in vivo. In Caenorhabditis elegans larvae, six pairs of hypodermal P cells migrate from lateral to ventral positions through a constricted space between the body wall muscles and the cuticle. P-cell nuclear migration is mediated in part by LINC complexes using a microtubule-based pathway and by an independent CDC-42/actin-based pathway. However, when both LINC complex and actin-based pathways are knocked out, many nuclei still migrate, suggesting the existence of additional pathways. Here, we show that FLN-2 functions in a third pathway to mediate P-cell nuclear migration. The predicted N-terminal actin-binding domain in FLN-2 that is found in canonical filamins is dispensable for FLN-2 function; this and structural predictions suggest that FLN-2 does not function as a filamin. The immunoglobulin-like repeats 4-8 of FLN-2 were necessary for P-cell nuclear migration. Furthermore, in the absence of the LINC complex component unc-84, fln-2 mutants had an increase in P-cell nuclear rupture. We conclude that FLN-2 functions to maintain the integrity of the nuclear envelope in parallel with the LINC complex and CDC-42/actin-based pathways to move P-cell nuclei through constricted spaces.

2.
Cell Metab ; 36(4): 808-821.e6, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38354740

RESUMO

SLC25A51 selectively imports oxidized NAD+ into the mitochondrial matrix and is required for sustaining cell respiration. We observed elevated expression of SLC25A51 that correlated with poorer outcomes in patients with acute myeloid leukemia (AML), and we sought to determine the role SLC25A51 may serve in this disease. We found that lowering SLC25A51 levels led to increased apoptosis and prolonged survival in orthotopic xenograft models. Metabolic flux analyses indicated that depletion of SLC25A51 shunted flux away from mitochondrial oxidative pathways, notably without increased glycolytic flux. Depletion of SLC25A51 combined with 5-azacytidine treatment limits expansion of AML cells in vivo. Together, the data indicate that AML cells upregulate SLC25A51 to decouple mitochondrial NAD+/NADH for a proliferative advantage by supporting oxidative reactions from a variety of fuels. Thus, SLC25A51 represents a critical regulator that can be exploited by cancer cells and may be a vulnerability for refractory AML.


Assuntos
Leucemia Mieloide Aguda , NAD , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Leucemia Mieloide Aguda/metabolismo , Mitocôndrias/metabolismo , NAD/metabolismo , Oxirredução
3.
bioRxiv ; 2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37577634

RESUMO

Nuclear migration through narrow constrictions is important for development, metastasis, and pro-inflammatory responses. Studies performed in tissue culture cells have implicated LINC (linker of nucleoskeleton and cytoskeleton) complexes, microtubule motors, the actin cytoskeleton, and nuclear envelope repair machinery as important mediators of nuclear movements through constricted spaces. However, little is understood about how these mechanisms operate to move nuclei in vivo. In C. elegans larvae, 6 pairs of hypodermal P cells migrate from lateral to ventral positions through a constricted space between the body wall muscles and the cuticle. P-cell nuclear migration is mediated in part by LINC complexes using a microtubule-based pathway and by an independent CDC-42/actin-based pathway. However, when both LINC complex and actin-based pathways are knocked out, many nuclei still migrate, suggesting the existence of additional pathways. Here we show that FLN-2 functions in a third pathway to mediate P-cell nuclear migration. The predicted N-terminal actin binding domain in FLN-2 that is found in canonical filamins is dispensable for FLN-2 function, this and structural predictions suggest that FLN-2 is not a divergent filamin. The immunoglobulin (Ig)-like repeats 4-8 of FLN-2 were necessary for P-cell nuclear migration. Furthermore, in the absence of the LINC complex component unc-84, fln-2 mutants had an increase in P-cell nuclear rupture. We conclude that FLN-2 functions to maintain the integrity of the nuclear envelope in parallel with the LINC complex and CDC-42/actin-based pathways to move P-cell nuclei through constricted spaces.

4.
Blood Adv ; 7(14): 3551-3560, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37042949

RESUMO

Tumor relapse and drug resistance are major factors that limit the curability of multiple myeloma (MM). New regimens have improved overall MM survival rates, but patients with high-risk features continue to have inferior outcomes. Chromosome 17p13 deletion (del17p) that includes the loss of the TP53 gene is a high-risk cytogenetic abnormality and is associated with poor clinical outcomes owing to relatively short remissions and the development of pan-drug resistant disease. Increased relapse rates suggest that del17p enhances clonogenic growth, and we found that the loss of p53 increased both the frequency and drug resistance of tumor-initiating MM cells (TICs). Subsequent RNA sequencing (RNA-seq) studies demonstrated significant activation of the Notch signaling pathway and upregulation of inhibitor of DNA binding (ID1/ID2) genes in p53-knock out (p53-KO) cells. We found that the loss of ID1 or HES-1 expression or treatment with a gamma-secretase inhibitor (GSI) significantly decreased the clonogenic growth of p53-KO but not p53 wild-type cells. GSI treatment in a small set of MM specimens also reduced the clonogenic growth in del17p samples but not in non-del17p samples. This effect was specific as overexpression of the Notch intracellular domain (NICD) rescued the effects of GSI treatment. Our study demonstrates that the Notch signaling and ID1 expression are required for TIC expansion in p53-KO MM cells. These findings also suggest that GSI may be specifically active in patients with p53 mutant MM.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Genes p53 , Recidiva Local de Neoplasia , Transdução de Sinais , Resistencia a Medicamentos Antineoplásicos/genética
5.
CNS Spectr ; 27(3): 339-346, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33280616

RESUMO

OBJECTIVE: Fibromyalgia (FM) is a chronic widespread pain syndrome. Although its mechanism remains relatively unknown, accelerated neurodegeneration in the brain has been reported in patients with FM. Sleep disturbance can increase the risk of neurocognitive disorders, which are associated with tau and beta-amyloid (Aß) protein accumulation. We hypothesize neurodegeneration in patients with FM may be associated with sleep disturbance. METHODS: In this case-control study, we analyzed serum tau and Aß levels and their association with symptom profiles for patients with FM, by recruiting 22 patients with FM and 22 age-matched healthy participants. The visual analog scale, Fibromyalgia Impact Questionnaire, pressure pain threshold test, Pittsburgh Sleep Quality Index (PSQI), Beck Depression Inventory-II, Beck Anxiety Inventory, and serum tau and beta-amyloid-42 (Aß-42) levels were recorded. The Mann-Whitney test was conducted to compare questionnaire and protein level results between the groups. Pearson correlation test was conducted to investigate the correlation of questionnaire scores with tau and Aß-42 levels in patients with FM. The significance level was set at P < .05. RESULTS: Serum tau and Aß-42 levels were significantly higher in patients with FM than in controls. A positive correlation between serum tau levels and PSQI scores was observed in patients with FM (r = 0.476, P = .025). We found that only sleep disturbance in patients with FM was significantly associated with higher serum tau levels among all symptom scores. CONCLUSIONS: We suggest sleep disturbance may play a vital role in the pathomechanism of accelerated neurodegeneration in FM.


Assuntos
Fibromialgia , Transtornos do Sono-Vigília , Peptídeos beta-Amiloides , Estudos de Casos e Controles , Fibromialgia/psicologia , Humanos , Sono , Transtornos do Sono-Vigília/psicologia
6.
Pancreas ; 48(3): 329-334, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30747824

RESUMO

OBJECTIVE: Cancer-associated fibroblasts (CAFs) play an important role in the progression of pancreatic ductal adenocarcinoma (PDAC) by promoting tumor cell migration and drug resistance. We determined the impact of CAFs on PDAC cancer stem cells (CSCs). METHODS: Fibroblast cell lines from patients' tumors were cocultured with PDAC cells and examined for clonogenic growth and self-renewal using colony-forming assays and migration in vitro. Changes in the frequency of CSCs was determined by flow cytometry. The effect of integrin-focal adhesion kinase (FAK) signaling on CAF-mediated clonogenic growth was evaluated using short hairpin RNAs against ß1 integrin and FAK as well as a small-molecule FAK inhibitor. RESULTS: Cancer-associated fibroblasts enhanced PDAC clonogenic growth, self-renewal, and migration that was associated with an increase in the frequency of CSCs. These fibroblast cells were activated by PDAC cells and increased collagen synthesis resulting in FAK activation in PDAC cells. Knockdown of ß1-integrin and FAK or the inhibition of FAK kinase activity in PDAC cells abrogated the impact of CAFs on clonogenic growth. CONCLUSION: Therefore, CAFs enhance PDAC clonogenic growth, self-renewal, and the frequency of CSCs through type I collagen production that enhances integrin-FAK signaling in PDAC cells.


Assuntos
Fibroblastos Associados a Câncer/patologia , Comunicação Celular , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/patologia , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Técnicas de Cocultura , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/metabolismo , Interferência de RNA , Transdução de Sinais/genética
7.
Mol Cancer Res ; 17(4): 929-936, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30655325

RESUMO

Self-renewal maintains the long-term clonogenic growth that is required for cancer relapse and progression, but the cellular processes regulating this property are not fully understood. In many diseases, self-renewal is enhanced in cancer stem cells (CSC), and in pancreatic ductal adenocarcinoma (PDAC), CSCs are characterized by the surface expression of CD44. In addition to cell adhesion, CD44 impacts cell shape and morphology by modulating the actin cytoskeleton via Ezrin, a member of the Ezrin/Radixin/Moesin (ERM) family of linker proteins. We examined the expression of Ezrin in PDAC cells and found higher levels of both total and activated Ezrin in CSCs compared with bulk tumor cells. We also found that the knockdown of Ezrin in PDAC cells decreased clonogenic growth, self-renewal, cell migration, and CSC frequency in vitro as well as tumor initiation in vivo. These effects were associated with cytoskeletal changes that are similar to those occurring during the differentiation of normal stem cells, and the inhibition of actin remodeling reversed the impact of Ezrin loss. Finally, targeting Ezrin using a small-molecule inhibitor limited the self-renewal of clinically derived low-passage PDAC xenografts. Our findings demonstrate that Ezrin modulates CSCs properties and may represent a novel target for the treatment of PDAC. IMPLICATIONS: Our findings demonstrate that Ezrin modulates CSCs' properties and may represent a novel target for the treatment of PDAC.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Proteínas do Citoesqueleto/biossíntese , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Actinas/metabolismo , Adamantano/análogos & derivados , Adamantano/farmacologia , Animais , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/metabolismo , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Quinolinas/farmacologia
8.
Development ; 143(22): 4193-4202, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27697906

RESUMO

Cellular migrations through constricted spaces are a crucial aspect of many developmental and disease processes including hematopoiesis, inflammation and metastasis. A limiting factor in these events is nuclear deformation. Here, we establish an in vivo model in which nuclei can be visualized while moving through constrictions and use it to elucidate mechanisms for nuclear migration. C. elegans hypodermal P-cell larval nuclei traverse a narrow space that is about 5% their width. This constriction is blocked by fibrous organelles, structures that pass through P cells to connect the muscles to cuticle. Fibrous organelles are removed just prior to nuclear migration, when nuclei and lamins undergo extreme morphological changes to squeeze through the space. Both actin and microtubule networks are organized to mediate nuclear migration. The LINC complex, consisting of the SUN protein UNC-84 and the KASH protein UNC-83, recruits dynein and kinesin-1 to the nuclear surface. Both motors function in P-cell nuclear migration, but dynein, functioning through UNC-83, plays a more central role as nuclei migrate towards minus ends of polarized microtubule networks. Thus, the nucleoskeleton and cytoskeleton are coordinated to move nuclei through constricted spaces.


Assuntos
Citoesqueleto de Actina/metabolismo , Caenorhabditis elegans , Núcleo Celular/metabolismo , Derme/embriologia , Derme/metabolismo , Microtúbulos/metabolismo , Actinas/metabolismo , Animais , Animais Geneticamente Modificados , Transporte Biológico , Padronização Corporal , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Citoesqueleto/metabolismo , Derme/ultraestrutura , Embrião não Mamífero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA