Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
New Phytol ; 236(5): 1655-1660, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36093736

RESUMO

Iron (Fe) homeostasis is essential for both plant development and human nutrition. The maintenance of Fe homeostasis involves a complex network in which Fe signaling nodes and circuits coordinate tightly Fe transporters, ferric reductases, H+ -ATPases, low-molecular-mass metal chelators, and transporters of chelators and Fe-chelate complexes. Early-stage studies have revealed different strategies for Fe homeostasis between graminaceous and nongraminaceous plants. Recent progress has refreshed our understanding of previous knowledge, especially on the uptake, phloem transport and systemic signaling of Fe. This review attempts to summarize recent exciting and potentially influential studies on the various routes of Fe uptake and distribution in plants, focusing on breakthroughs that have changed our understanding of plant Fe nutrition.


Assuntos
Ferro , Plantas , Transporte Biológico , Quelantes , Regulação da Expressão Gênica de Plantas , Homeostase , Ferro/metabolismo , Plantas/metabolismo , ATPases Translocadoras de Prótons
3.
Sci Adv ; 7(36): eabh2450, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516912

RESUMO

Accumulation of iron in seeds is essential for both plant reproduction and human nutrition. Transport of iron to seeds requires the chelator nicotianamine (NA) to prevent its precipitation in the plant vascular tissues. However, how NA is transported to the apoplast for forming metal-NA complexes remains unknown. Here, we report that two members of the nitrate/peptide transporter family, NAET1 and NAET2, function as NA transporters required for translocation of both iron and copper to seeds. We show that NAET1 and NAET2 are predominantly expressed in the shoot and root vascular tissues and mediate secretion of NA out of the cells in resembling the release of neurotransmitters from animal synaptic vesicles. These findings reveal an unusual mechanism of transmembrane transport in plants and uncover a fundamental aspect of plant nutrition that has implications for improving food nutrition and human health.

4.
J Exp Bot ; 70(20): 5909-5918, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31328224

RESUMO

Cadmium (Cd) is a highly toxic heavy metal in nature, which causes severe damage to plant growth. The molecular mechanisms for Cd detoxification are poorly understood. Here, we report that a G-type ATP-binding cassette transporter, OsABCG36, is involved in Cd tolerance in rice. OsABCG36 was expressed in both roots and shoots at a low level, but expression in the roots rather than the shoots was greatly up-regulated by a short exposure to Cd. A spatial expression analysis showed that Cd-induced expression of OsABCG36 was found in both the root tip and the mature root region. Transient expression of OsABCG36 in rice protoplast cells showed that it was localized to the plasma membrane. Immunostaining showed that OsABCG36 was localized in all root cells except the epidermal cells. Knockout of OsABCG36 resulted in increased Cd accumulation in root cell sap and enhanced Cd sensitivity, but did not affect tolerance to other metals including Al, Zn, Cu, and Pb. The concentration of Cd in the shoots was similar between the knockout lines and wild-type rice. Heterologous expression of OsABCG36 in yeast showed an efflux activity for Cd, but not for Zn. Taken together, our results indicate that OsABCG36 is not involved in Cd accumulation in the shoots, but is required for Cd tolerance by exporting Cd or Cd conjugates from the root cells in rice.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Cádmio/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo
5.
PLoS Biol ; 15(12): e2002978, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29284002

RESUMO

Ion homeostasis is essential for plant growth and environmental adaptation, and maintaining ion homeostasis requires the precise regulation of various ion transporters, as well as correct root patterning. However, the mechanisms underlying these processes remain largely elusive. Here, we reported that a choline transporter gene, CTL1, controls ionome homeostasis by regulating the secretory trafficking of proteins required for plasmodesmata (PD) development, as well as the transport of some ion transporters. Map-based cloning studies revealed that CTL1 mutations alter the ion profile of Arabidopsis thaliana. We found that the phenotypes associated with these mutations are caused by a combination of PD defects and ion transporter misregulation. We also established that CTL1 is involved in regulating vesicle trafficking and is thus required for the trafficking of proteins essential for ion transport and PD development. Characterizing choline transporter-like 1 (CTL1) as a new regulator of protein sorting may enable researchers to understand not only ion homeostasis in plants but also vesicle trafficking in general.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Glicosídeo Hidrolases/fisiologia , Transporte de Íons/genética , Proteínas de Membrana Transportadoras/fisiologia , Adenosina Trifosfatases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte de Cátions/metabolismo , Clonagem Molecular , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Homeostase , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Transporte Proteico , Simportadores/metabolismo
6.
PLoS Genet ; 12(9): e1006298, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27622452

RESUMO

Sulphur (S) is an essential element for all living organisms. The uptake, assimilation and metabolism of S in plants are well studied. However, the regulation of S homeostasis remains largely unknown. Here, we report on the identification and characterisation of the more sulphur accumulation1 (msa1-1) mutant. The MSA1 protein is localized to the nucleus and is required for both S-adenosylmethionine (SAM) production and DNA methylation. Loss of function of the nuclear localised MSA1 leads to a reduction in SAM in roots and a strong S-deficiency response even at ample S supply, causing an over-accumulation of sulphate, sulphite, cysteine and glutathione. Supplementation with SAM suppresses this high S phenotype. Furthermore, mutation of MSA1 affects genome-wide DNA methylation, including the methylation of S-deficiency responsive genes. Elevated S accumulation in msa1-1 requires the increased expression of the sulphate transporter genes SULTR1;1 and SULTR1;2 which are also differentially methylated in msa1-1. Our results suggest a novel function for MSA1 in the nucleus in regulating SAM biosynthesis and maintaining S homeostasis epigenetically via DNA methylation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Epigênese Genética , Homeostase , Proteínas Nucleares/genética , S-Adenosilmetionina/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Metilação de DNA , Glutationa/metabolismo , Proteínas Nucleares/metabolismo
8.
PLoS Biol ; 12(12): e1002009, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25464340

RESUMO

Inorganic arsenic is a carcinogen, and its ingestion through foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in Arabidopsis thaliana allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content 1 (HAC1). Complementation verified the identity of HAC1, and expression in Escherichia coli lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking HAC1 lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit both its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of HAC1-encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots, causing an increased sensitivity to arsenate toxicity. We also confirmed the previous observation that the ACR2 arsenate reductase in A. thaliana plays no detectable role in arsenic metabolism. Furthermore, ACR2 does not interact epistatically with HAC1, since arsenic metabolism in the acr2 hac1 double mutant is disrupted in an identical manner to that described for the hac1 single mutant. Our identification of HAC1 and its associated natural variation provides an important new resource for the development of low arsenic-containing food such as rice.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arseniato Redutases/metabolismo , Arsênio/metabolismo , Estudo de Associação Genômica Ampla , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Arseniato Redutases/genética , Epistasia Genética , Genes de Plantas , Loci Gênicos , Modelos Biológicos , Dados de Sequência Molecular , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de Proteína
9.
Plant Physiol ; 166(3): 1593-608, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25245030

RESUMO

Natural variation allows the investigation of both the fundamental functions of genes and their role in local adaptation. As one of the essential macronutrients, sulfur is vital for plant growth and development and also for crop yield and quality. Selenium and sulfur are assimilated by the same process, and although plants do not require selenium, plant-based selenium is an important source of this essential element for animals. Here, we report the use of linkage mapping in synthetic F2 populations and complementation to investigate the genetic architecture of variation in total leaf sulfur and selenium concentrations in a diverse set of Arabidopsis (Arabidopsis thaliana) accessions. We identify in accessions collected from Sweden and the Czech Republic two variants of the enzyme ADENOSINE 5'-PHOSPHOSULFATE REDUCTASE2 (APR2) with strongly diminished catalytic capacity. APR2 is a key enzyme in both sulfate and selenate reduction, and its reduced activity in the loss-of-function allele apr2-1 and the two Arabidopsis accessions Hodonín and Shahdara leads to a lowering of sulfur flux from sulfate into the reduced sulfur compounds, cysteine and glutathione, and into proteins, concomitant with an increase in the accumulation of sulfate in leaves. We conclude from our observation, and the previously identified weak allele of APR2 from the Shahdara accession collected in Tadjikistan, that the catalytic capacity of APR2 varies by 4 orders of magnitude across the Arabidopsis species range, driving significant differences in sulfur and selenium metabolism. The selective benefit, if any, of this large variation remains to be explored.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Selênio/metabolismo , Enxofre/metabolismo , Substituição de Aminoácidos , Proteínas de Arabidopsis/genética , República Tcheca , Frequência do Gene , Variação Genética , Estudo de Associação Genômica Ampla , Isoenzimas/genética , Isoenzimas/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Fenótipo , Folhas de Planta/metabolismo , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Sulfatos/metabolismo , Suécia
10.
Science ; 341(6146): 658-9, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23887874

RESUMO

Genome duplication (or polyploidization) has occurred throughout plant evolutionary history and is thought to have driven the adaptive radiation of plants. We found that the cytotype of the root, and not the genotype, determined the majority of heritable natural variation in leaf potassium (K) concentration in Arabidopsis thaliana. Autopolyploidy also provided resistance to salinity and may represent an adaptive outcome of the enhanced K accumulation of plants with higher ploidy.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Potássio/metabolismo , Tolerância ao Sal/genética , Tetraploidia , Folhas de Planta/química , Folhas de Planta/citologia , Raízes de Plantas/química , Raízes de Plantas/citologia , Potássio/análise
11.
PLoS Genet ; 8(9): e1002923, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22969436

RESUMO

Understanding the mechanism of cadmium (Cd) accumulation in plants is important to help reduce its potential toxicity to both plants and humans through dietary and environmental exposure. Here, we report on a study to uncover the genetic basis underlying natural variation in Cd accumulation in a world-wide collection of 349 wild collected Arabidopsis thaliana accessions. We identified a 4-fold variation (0.5-2 µg Cd g(-1) dry weight) in leaf Cd accumulation when these accessions were grown in a controlled common garden. By combining genome-wide association mapping, linkage mapping in an experimental F2 population, and transgenic complementation, we reveal that HMA3 is the sole major locus responsible for the variation in leaf Cd accumulation we observe in this diverse population of A. thaliana accessions. Analysis of the predicted amino acid sequence of HMA3 from 149 A. thaliana accessions reveals the existence of 10 major natural protein haplotypes. Association of these haplotypes with leaf Cd accumulation and genetics complementation experiments indicate that 5 of these haplotypes are active and 5 are inactive, and that elevated leaf Cd accumulation is associated with the reduced function of HMA3 caused by a nonsense mutation and polymorphisms that change two specific amino acids.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Adenosina Trifosfatases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cádmio , Estudo de Associação Genômica Ampla , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
12.
Plant Cell Physiol ; 53(6): 987-1002, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22470056

RESUMO

Lutein is the most abundant plant carotenoid and plays essential roles in photosystem assembly and stabilization, as well as protection against photostress. To date, only a few lutein biosynthesis genes have been identified in crop plants. In this study, the rice Cyt P450 gene CYP97A4 encoding a carotenoid ß-ring hydroxylase was shown to be involved in lutein biosynthesis. The results revealed that CYP97A4 was preferentially expressed in leaf compared with spikelet, sheath, stalk and root, and encoded a protein localized at the subcellular level to the chloroplasts. Compared with the wild type, the three allelic mutants of CYP97A4 displayed lutein reductions of 12-24% with substantially increased α-carotene, while Chl a/b levels were unaltered. The increased α-carotene in the mutants led to greater sensitivity under high light stress. Similarly, reactive oxygen species (ROS) imaging of leaves treated with intense light showed that the mutants generally accumulated greater levels of ROS compared with wild-type plants, which probably caused detrimental effects to the plant photosystem. In conclusion, this study demonstrated the important role of CYP97A4 in α-carotene hydroxylation in rice, and knock-out of the gene reduced lutein and increased α-carotene, contributing to sensitivity to intense light.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Luz , Luteína/biossíntese , Oryza/enzimologia , Sequência de Aminoácidos , Carotenoides/genética , Carotenoides/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Sistema Enzimático do Citocromo P-450/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas , Hidroxilação , Membranas Intracelulares/metabolismo , Luteína/genética , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Oryza/genética , Oryza/efeitos da radiação , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/efeitos da radiação , Plasmídeos/genética , Plasmídeos/metabolismo , Protoplastos/citologia , Protoplastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Alinhamento de Sequência , Estresse Fisiológico , Nicotiana/genética , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA