Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 3753-3772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686338

RESUMO

Background: Gemcitabine (GEM) faces challenges of poor oral bioavailability and extensive first-pass metabolism. Currently, only injectable formulations are available for clinical use. Hence, there is an urgent demand for the development of advanced, efficacious, and user-friendly dosage forms to maintain its status as the primary treatment for pancreatic ductal adenocarcinoma (PDAC). Nanogels (NGs) offer a novel oral drug delivery system, ideal for hydrophilic compounds like GEM. This study aims to develop NGs tailored for GEM delivery, with the goal of enhancing cellular uptake and gastrointestinal permeability for improved administration in PDAC patients. Methods: We developed cross-linked NGs via photopolymerization of methacryloyl for drug delivery of GEM. We reveal characterization, cytotoxicity, and cellular uptake studies in Caco-2 and MIA PaCa-2 cells. In addition, studies of in vitro permeability and pharmacokinetics were carried out to evaluate the bioavailability of the drug. Results: Our results show NGs, formed via photopolymerization of methacryloyl, had a spherical shape with a size of 233.91±7.75 nm. Gemcitabine-loaded NGs (NGs-GEM) with 5% GelMA exhibited efficient drug loading (particle size: 244.07±19.52 nm). In vitro drug release from NGs-GEM was slower at pH 1.2 than pH 6.8. Cellular uptake studies indicated significantly enhanced uptake in both MIA PaCa-2 and Caco-2 cells. While there was no significant difference in GEM's AUC and Cmax between NGs-GEM and free-GEM groups, NGs-GEM showed markedly lower dFdU content (10.07 hr∙µg/mL) compared to oral free-GEM (19.04 hr∙µg/mL) after oral administration (p<0.01), highlighting NGs' efficacy in impeding rapid drug metabolism and enhancing retention. Conclusion: In summary, NGs enhance cellular uptake, inhibit rapid metabolic degradation of GEM, and prolong retention after oral administration. These findings suggest NGs-GEM as a promising candidate for clinical use in oral pancreatic cancer therapy.


Assuntos
Desoxicitidina , Gencitabina , Neoplasias Pancreáticas , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Desoxicitidina/farmacocinética , Desoxicitidina/farmacologia , Desoxicitidina/administração & dosagem , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Células CACO-2 , Administração Oral , Animais , Linhagem Celular Tumoral , Nanogéis/química , Antimetabólitos Antineoplásicos/farmacocinética , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/farmacologia , Disponibilidade Biológica , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Tamanho da Partícula , Carcinoma Ductal Pancreático/tratamento farmacológico , Polimerização , Sistemas de Liberação de Medicamentos/métodos
2.
Nanoscale ; 15(44): 17825-17838, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37850423

RESUMO

Albumin nanoparticles (NPs) and PEGylated liposomes have garnered tremendous interest as therapeutic drug carriers due to their unique physicochemical properties. These unique properties also have significant effects on the composition and structure of the protein corona formed around these NPs in a biological environment. Herein, protein corona formation on albumin NPs and liposomes was simultaneously evaluated through in vitro and simulation studies. The sizes of both types of NPs increased with more negatively charged interfaces upon being introduced into fetal bovine serum. Gel electrophoresis and label-free quantitative proteomics were performed to identify proteins recruited to the hard corona, and fewer proteins were found in albumin NPs than in liposomes, which is in accordance with isothermal titration calorimetry. The cellular uptake efficiency of the two NPs significantly differed in different serum concentrations, which was further scrutinized by loading an anticancer compound into albumin NPs. The presence of the hard protein corona increased the cellular uptake of albumin NPs in comparison with liposomes. In our simulation study, a specific receptor present in the membrane was greatly attracted to the albumin-apolipoprotein E complex. Overall, this study not only evaluated protein corona formation on albumin NPs, but also made promising advancements toward albumin- and liposome-based therapeutic systems.


Assuntos
Nanopartículas , Coroa de Proteína , Coroa de Proteína/química , Lipossomos/química , Nanomedicina , Nanopartículas/química , Soroalbumina Bovina
3.
Int J Nanomedicine ; 15: 1721-1730, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210562

RESUMO

INTRODUCTION: In this study, the combination of TEMPO-oxidized sacchachitin nanofibers (TOSCNFs) with chitosan-activated platelet-rich plasma (cPRP) was evaluated for remedying dry eye syndrome (DES). METHODS: TOSCNFs, designated T050SC, were generated. T050SC combined with chitosan-activated (cPRP) was formulated as eye drops for application for severe DES. To evaluate the effects of cPRP and TOSCNFs on the repair of corneal injury, in vitro studies were conducted using Statens Seruminstitut rabbit corneal (SIRC) epithelial cells for cell proliferation and cell migration assays, and a severe DES animal model using rabbits was established with benzalkonium chloride (BAC) treatment for the evaluation. RESULTS: Results showed that the optimal eye formulation contained PRP activated by 350 µg/mL of the low-molecular-weight chitosan group (L3) combined with 300 µg/mL TO50SC (L3+T050SC). In the WST-1 cell-proliferation assay, L3 and L3+TO50SC significantly increased Statens SIRC cell proliferation after 24 hrs of incubation. In the SIRC cell migration assay, the L3+TO50SC group showed a wound-healing efficiency of 89% after 24-hr treatment. After 5 days of treatment, Schirmer's test results did not simulate the dry eye animal model. Typical cornea appearance and eye fluorescein staining results showed that the L3 group had the best effect on improving cornea haze and epithelial damage. CONCLUSION: This study has determined that TOSCNFs effectively promoted the healing effect on severe cases of corneal damage, and also might enhance the clinical application and medical potential of PRP in ophthalmology.


Assuntos
Quitina/química , Óxidos N-Cíclicos/química , Síndromes do Olho Seco/terapia , Glucanos/química , Nanofibras/química , Plasma Rico em Plaquetas/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Quitina/farmacologia , Córnea/efeitos dos fármacos , Córnea/patologia , Córnea/cirurgia , Modelos Animais de Doenças , Síndromes do Olho Seco/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Fibroblastos/efeitos dos fármacos , Glucanos/farmacologia , Nanofibras/ultraestrutura , Oxirredução , Coelhos , Regeneração/efeitos dos fármacos
4.
Sci Rep ; 8(1): 8092, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802291

RESUMO

Complex hydrogels formed with chitosan (CS) and ring-opened polyvinyl pyrrolidone (roPVP) as a swellable mucoadhesive gastroretentive drug dosage form (smGRDDF) were prepared and characterized. CS/roPVP hydrogels were produced by blending CS with roPVP obtained by basic treatment of PVP. Effects of the heating time and NaOH concentration employed for preparing roPVP, and CS molecular weights (Mws), and roPVP/CS ratios on the swelling ability of the resultant hydrogels were characterized. Rheological characteristics were further examined. Results demonstrated that roPVP obtained in a 0.5 M NaOH solution heated to 50 °C for 4 h was suitable for producing complex hydrogels with CS. At a roPVP/CS ratio of 20:1, hydrogels composed of three different Mws of CS possessed optimal swelling and mucoadhesive abilities and rheological properties. In vitro dissolution revealed sustained drug release. A pharmacokinetic study exhibited that the plasma profile of alendronate followed a sustained manner with 3-fold enhancement of the oral bioavailability. In conclusion, the smGRDDF composed of CS/roPVP complex hydrogels was successfully developed and is potentially applicable to improve the clinical efficacy of bisphosphonates.


Assuntos
Quitosana/química , Difosfonatos/química , Difosfonatos/farmacocinética , Portadores de Fármacos/química , Trato Gastrointestinal/metabolismo , Hidrogéis/química , Povidona/química , Adesividade , Animais , Disponibilidade Biológica , Liberação Controlada de Fármacos , Temperatura Alta , Coelhos , Hidróxido de Sódio/química , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA