Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(8): 102210, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35780837

RESUMO

Microaerophilic pathogens such as Giardia lamblia, Entamoeba histolytica, and Trichomonas vaginalis have robust oxygen consumption systems to detoxify oxygen and maintain intracellular redox balance. This oxygen consumption results from H2O-forming NADH oxidase (NOX) activity of two distinct flavin-containing systems: H2O-forming NOXes and multicomponent flavodiiron proteins (FDPs). Neither system is membrane bound, and both recycle NADH into oxidized NAD+ while simultaneously removing O2 from the local environment. However, little is known about the specific contributions of these systems in T. vaginalis. In this study, we use bioinformatics and biochemical analyses to show that T. vaginalis lacks a NOX-like enzyme and instead harbors three paralogous genes (FDPF1-3), each encoding a natural fusion product between the N-terminal FDP, central rubredoxin (Rb), and C-terminal NADH:Rb oxidoreductase domains. Unlike a "stand-alone" FDP that lacks Rb and oxidoreductase domains, this natural fusion protein with fully populated flavin redox centers directly accepts reducing equivalents of NADH to catalyze the four-electron reduction of oxygen to water within a single polypeptide with an extremely high turnover. Furthermore, using single-particle cryo-EM, we present structural insights into the spatial organization of the FDP core within this multidomain fusion protein. Together, these results contribute to our understanding of systems that allow protozoan parasites to maintain optimal redox balance and survive transient exposure to oxic conditions.


Assuntos
Rubredoxinas , Trichomonas vaginalis , Flavinas/metabolismo , NAD/metabolismo , NADH NADPH Oxirredutases/metabolismo , Oxirredução , Oxirredutases/metabolismo , Oxigênio/metabolismo , Rubredoxinas/genética , Rubredoxinas/metabolismo , Trichomonas vaginalis/genética , Trichomonas vaginalis/metabolismo , Água/metabolismo
2.
Cell ; 184(16): 4268-4283.e20, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34233163

RESUMO

Ultraviolet (UV) light and incompletely understood genetic and epigenetic variations determine skin color. Here we describe an UV- and microphthalmia-associated transcription factor (MITF)-independent mechanism of skin pigmentation. Targeting the mitochondrial redox-regulating enzyme nicotinamide nucleotide transhydrogenase (NNT) resulted in cellular redox changes that affect tyrosinase degradation. These changes regulate melanosome maturation and, consequently, eumelanin levels and pigmentation. Topical application of small-molecule inhibitors yielded skin darkening in human skin, and mice with decreased NNT function displayed increased pigmentation. Additionally, genetic modification of NNT in zebrafish alters melanocytic pigmentation. Analysis of four diverse human cohorts revealed significant associations of skin color, tanning, and sun protection use with various single-nucleotide polymorphisms within NNT. NNT levels were independent of UVB irradiation and redox modulation. Individuals with postinflammatory hyperpigmentation or lentigines displayed decreased skin NNT levels, suggesting an NNT-driven, redox-dependent pigmentation mechanism that can be targeted with NNT-modifying topical drugs for medical and cosmetic purposes.


Assuntos
Fator de Transcrição Associado à Microftalmia/metabolismo , NADP Trans-Hidrogenases/metabolismo , Pigmentação da Pele/efeitos da radiação , Raios Ultravioleta , Animais , Linhagem Celular , Estudos de Coortes , AMP Cíclico/metabolismo , Dano ao DNA , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Predisposição Genética para Doença , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanossomas/efeitos dos fármacos , Melanossomas/metabolismo , Melanossomas/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , NADP Trans-Hidrogenases/antagonistas & inibidores , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , Polimorfismo de Nucleotídeo Único/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Proteólise/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pigmentação da Pele/efeitos dos fármacos , Pigmentação da Pele/genética , Ubiquitina/metabolismo , Peixe-Zebra
3.
F1000Res ; 82019.
Artigo em Inglês | MEDLINE | ID: mdl-30647914

RESUMO

The mechanistic target of rapamycin (MTOR) is a giant protein kinase that, together with the accessory proteins Raptor and mLst8, forms a complex of over 1 MDa known as MTOR complex 1 (MTORC1). MTORC1, through its protein kinase activity, controls the accretion of cell mass through the regulation of gene transcription, mRNA translation, and protein turnover. MTORC1 is activated in an interdependent manner by insulin/growth factors and nutrients, especially amino acids, and is inhibited by stressors such as hypoxia and by the drug rapamycin. The action of insulin/growth factors converges on the small GTPase Rheb, which binds directly to the MTOR polypeptide in MTORC1 and, in its GTP-bound state, initiates kinase activation. Biochemical studies established that MTORC1 exists as a dimer of the MTOR/Raptor/mLst8 trimer, and progressive refinements in cryo-electron microscopy (cryo-EM) have enabled an increasingly clear picture of the architecture of MTORC1, culminating in a deep understanding of how MTORC1 interacts with and phosphorylates its best-known substrates-the eIF-4E binding protein/4E-BP, the p70 S6 kinase/S6K1B, and PRAS40/AKT1S1-and how this is inhibited by rapamycin. Most recently, Rheb-GTP has been shown to bind to MTORC1 in a cooperative manner at an allosteric site remote from the kinase domain that twists the latter into a catalytically competent configuration. Herein, we review the recent cryo-EM and associated biochemical studies of MTORC1 and seek to integrate these new results with the known physiology of MTORC1 regulation and signaling.


Assuntos
Microscopia Crioeletrônica , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Proteína Enriquecida em Homólogo de Ras do Encéfalo/química , Animais , Humanos
4.
Elife ; 72018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-29999491

RESUMO

Dengue virus (DV) is a compact, icosahedrally symmetric, enveloped particle, covered by 90 dimers of envelope protein (E), which mediates viral attachment and membrane fusion. Fusion requires a dimer-to-trimer transition and membrane engagement of hydrophobic 'fusion loops'. We previously characterized the steps in membrane fusion for the related West Nile virus (WNV), using recombinant, WNV virus-like particles (VLPs) for single-particle experiments (Chao et al., 2014). Trimerization and membrane engagement are rate-limiting; fusion requires at least two adjacent trimers; availability of competent monomers within the contact zone between virus and target membrane creates a trimerization bottleneck. We now report an extension of that work to dengue VLPs, from all four serotypes, finding an essentially similar mechanism. Small-molecule inhibitors of dengue virus infection that target E block its fusion-inducing conformational change. We show that ~12-14 bound molecules per particle (~20-25% occupancy) completely prevent fusion, consistent with the proposed mechanism.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/fisiologia , Internalização do Vírus/efeitos dos fármacos , Antivirais/síntese química , Membrana Celular/metabolismo , Modelos Biológicos , Multimerização Proteica , Rodaminas/síntese química , Rodaminas/farmacologia , Ácidos Sulfônicos/síntese química , Ácidos Sulfônicos/farmacologia , Proteínas do Envelope Viral/metabolismo , Virossomos/efeitos dos fármacos
5.
Elife ; 3: e04389, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25479384

RESUMO

The West Nile Virus (WNV) envelope protein, E, promotes membrane fusion during viral cell entry by undergoing a low-pH triggered conformational reorganization. We have examined the mechanism of WNV fusion and sought evidence for potential intermediates during the conformational transition by following hemifusion of WNV virus-like particles (VLPs) in a single particle format. We have introduced specific mutations into E, to relate their influence on fusion kinetics to structural features of the protein. At the level of individual E subunits, trimer formation and membrane engagement of the threefold clustered fusion loops are rate-limiting. Hemifusion requires at least two adjacent trimers. Simulation of the kinetics indicates that availability of competent monomers within the contact zone between virus and target membrane makes trimerization a bottleneck in hemifusion. We discuss the implications of the model we have derived for mechanisms of membrane fusion in other contexts.


Assuntos
Fusão de Membrana/genética , Proteínas do Envelope Viral/química , Vírion/química , Internalização do Vírus , Vírus do Nilo Ocidental/química , Aedes , Animais , Linhagem Celular , Simulação por Computador , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Expressão Gênica , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Mutagênese Sítio-Dirigida , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Vírion/genética , Vírion/metabolismo , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/metabolismo
6.
Elife ; 3: e01610, 2014 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-24473075

RESUMO

The activation of the dodecameric Ca(2+)/calmodulin dependent kinase II (CaMKII) holoenzyme is critical for memory formation. We now report that CaMKII has a remarkable property, which is that activation of the holoenzyme triggers the exchange of subunits between holoenzymes, including unactivated ones, enabling the calcium-independent phosphorylation of new subunits. We show, using a single-molecule TIRF microscopy technique, that the exchange process is triggered by the activation of CaMKII, and that exchange is modulated by phosphorylation of two residues in the calmodulin-binding segment, Thr 305 and Thr 306. Based on these results, and on the analysis of molecular dynamics simulations, we suggest that the phosphorylated regulatory segment of CaMKII interacts with the central hub of the holoenzyme and weakens its integrity, thereby promoting exchange. Our results have implications for an earlier idea that subunit exchange in CaMKII may have relevance for information storage resulting from brief coincident stimuli during neuronal signaling. DOI: http://dx.doi.org/10.7554/eLife.01610.001.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Calmodulina/metabolismo , Domínio Catalítico , Ativação Enzimática , Estabilidade Enzimática , Holoenzimas/metabolismo , Humanos , Cinética , Microscopia de Fluorescência , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fosforilação , Ligação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Treonina
7.
Cancer Res ; 66(2): 1007-14, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16424036

RESUMO

We present a high-resolution (2.0 A) crystal structure of the catalytic domain of a mutant form of the Abl tyrosine kinase (H396P; Abl-1a numbering) that is resistant to the Abl inhibitor imatinib. The structure is determined in complex with the small-molecule inhibitor VX-680 (Vertex Pharmaceuticals, Cambridge, MA), which blocks the activity of various imatinib-resistant mutant forms of Abl, including one (T315I) that is resistant to both imatinib and BMS-354825 (dasatinib), a dual Src/Abl inhibitor that seems to be clinically effective against all other imatinib-resistant forms of BCR-Abl. VX-680 is shown to have significant inhibitory activity against BCR-Abl bearing the T315I mutation in patient-derived samples. The Abl kinase domain bound to VX-680 is not phosphorylated on the activation loop in the crystal structure but is nevertheless in an active conformation, previously unobserved for Abl and inconsistent with the binding of imatinib. The adoption of an active conformation is most likely the result of synergy between the His(396)Pro mutation, which destabilizes the inactive conformation required for imatinib binding, and the binding of VX-680, which favors the active conformation through hydrogen bonding and steric effects. VX-680 is bound to Abl in a mode that accommodates the substitution of isoleucine for threonine at residue 315 (the "gatekeeper" position). The avoidance of the innermost cavity of the Abl kinase domain by VX-680 and the specific recognition of the active conformation explain the effectiveness of this compound against mutant forms of BCR-Abl, including those with mutations at the gatekeeper position.


Assuntos
Proteínas de Fusão bcr-abl/genética , Genes abl , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/química , Pirimidinas/farmacologia , Aurora Quinases , Benzamidas , Domínio Catalítico , Cristalografia , Dasatinibe , Resistencia a Medicamentos Antineoplásicos , Escherichia coli/genética , Humanos , Ligação de Hidrogênio , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Fosforilação , Conformação Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/metabolismo , Tiazóis/farmacologia
8.
J Mol Biol ; 350(1): 145-55, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15919091

RESUMO

Tobacco etch virus (TEV) protease is a cysteine protease exhibiting stringent sequence specificity. The enzyme is widely used in biotechnology for the removal of the affinity tags from recombinant fusion proteins. Crystal structures of two TEV protease mutants as complexes with a substrate and a product peptide provided the first insight into the mechanism of substrate specificity of this enzyme. We now report a 2.7A crystal structure of a full-length inactive C151A mutant protein crystallised in the absence of peptide. The structure reveals the C terminus of the protease bound to the active site. In addition, we determined dissociation constants of TEV protease substrate and product peptides using isothermal titration calorimetry for various forms of this enzyme. Data suggest that TEV protease could be inhibited by the peptide product of autolysis. Separate modes of recognition for native substrates and the site of TEV protease self-cleavage are proposed.


Assuntos
Endopeptidases/química , Endopeptidases/metabolismo , Potyvirus/enzimologia , Proteína C/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Calorimetria , Catálise , Cristalografia por Raios X , Dimerização , Endopeptidases/genética , Endopeptidases/isolamento & purificação , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Potyvirus/genética , Ligação Proteica , Estrutura Quaternária de Proteína , Especificidade por Substrato , Titulometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA