RESUMO
Single-cell RNA sequencing (scRNA-seq) is a powerful technique for dissecting the complexity of normal and diseased tissues, enabling characterization of cell diversity and heterogeneous phenotypic states in unprecedented detail. However, this technology has been underutilized for exploring the interactions between the host cell and viral pathogens in latently infected cells. Herein, we use scRNA-seq and single-molecule sensitivity fluorescent in situ hybridization (smFISH) technologies to investigate host single-cell transcriptome changes upon the reactivation of a human neurotropic virus, herpes simplex virus-1 (HSV-1). We identify the stress sensor growth arrest and DNA damage-inducible 45 beta (Gadd45b) as a critical antiviral host factor that regulates HSV-1 reactivation events in a subpopulation of latently infected primary neurons. We show that distinct subcellular localization of Gadd45b correlates with the viral late gene expression program, as well as the expression of the viral transcription factor, ICP4. We propose that a hallmark of a "successful" or "aborted" HSV-1 reactivation state in primary neurons is determined by a unique subcellular localization signature of the stress sensor Gadd45b.
Assuntos
Antígenos de Diferenciação/metabolismo , Herpesvirus Humano 1 , Neurônios/virologia , Ativação Viral , Latência Viral , Regulação da Expressão Gênica , Herpesvirus Humano 1/fisiologia , Humanos , Hibridização in Situ Fluorescente , TranscriptomaRESUMO
In adult songbirds, the telencephalic song nucleus HVC and its efferent target RA undergo pronounced seasonal changes in morphology. In breeding birds, there are increases in HVC volume and total neuron number, and RA neuronal soma area compared to nonbreeding birds. At the end of breeding, HVC neurons die through caspase-dependent apoptosis and thus, RA neuron size decreases. Changes in HVC and RA are driven by seasonal changes in circulating testosterone (T) levels. Infusing T, or its metabolites 5α-dihydrotestosterone (DHT) and 17 ß-estradiol (E2), intracerebrally into HVC (but not RA) protects HVC neurons from death, and RA neuron size, in nonbreeding birds. The phosphoinositide 3-kinase (PI3K)-Akt (a serine/threonine kinase)-mechanistic target of rapamycin (mTOR) signaling pathway is a point of convergence for neuroprotective effects of sex steroids and other trophic factors. We asked if mTOR activation is necessary for the protective effect of hormones in HVC and RA of adult male Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii). We transferred sparrows from breeding to nonbreeding hormonal and photoperiod conditions to induce regression of HVC neurons by cell death and decrease of RA neuron size. We infused either DHT + E2, DHT + E2 plus the mTOR inhibitor rapamycin, or vehicle alone in HVC. Infusion of DHT + E2 protected both HVC and RA neurons. Coinfusion of rapamycin with DHT + E2, however, blocked the protective effect of hormones on HVC volume and neuron number, and RA neuron size. These results suggest that activation of mTOR is an essential downstream step in the neuroprotective cascade initiated by sex steroid hormones in the forebrain.
Assuntos
Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Sirolimo/farmacologia , Vocalização Animal/efeitos dos fármacos , Envelhecimento , Animais , Di-Hidrotestosterona/farmacologia , Estrogênios/farmacologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Pardais/fisiologia , Telencéfalo/efeitos dos fármacos , Testosterona/farmacologia , Vocalização Animal/fisiologiaRESUMO
BACE1 is a transmembrane aspartic protease that cleaves various substrates and it is required for normal brain function. BACE1 expression is high during early development, but it is reduced in adulthood. Under conditions of stress and injury, BACE1 levels are increased; however, the underlying mechanisms that drive BACE1 elevation are not well understood. One mechanism associated with brain injury is the activation of injurious p75 neurotrophin receptor (p75), which can trigger pathological signals. Here we report that within 72â¯h after controlled cortical impact (CCI) or laser injury, BACE1 and p75 are increased and tightly co-expressed in cortical neurons of mouse brain. Additionally, BACE1 is not up-regulated in p75 null mice in response to focal cortical injury, while p75 over-expression results in BACE1 augmentation in HEK-293 and SY5Y cell lines. A luciferase assay conducted in SY5Y cell line revealed that BACE1 expression is regulated at the transcriptional level in response to p75 transfection. Interestingly, this effect does not appear to be dependent upon p75 ligands including mature and pro-neurotrophins. In addition, BACE1 activity on amyloid precursor protein (APP) is enhanced in SY5Y-APP cells transfected with a p75 construct. Lastly, we found that the activation of c-jun n-terminal kinase (JNK) by p75 contributes to BACE1 up-regulation. This study explores how two injury-induced molecules are intimately connected and suggests a potential link between p75 signaling and the expression of BACE1 after brain injury.
Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Linhagem Celular Tumoral , Células Cultivadas , Córtex Cerebral/metabolismo , Células HEK293 , Humanos , MAP Quinase Quinase 4/metabolismo , Masculino , Camundongos , Receptor de Fator de Crescimento Neural/genética , Transdução de Sinais , Regulação para CimaRESUMO
The mTOR pathway integrates both extracellular and intracellular signals and serves as a central regulator of cell metabolism, growth, survival, and stress responses. Neurotropic viruses, such as herpes simplex virus-1 (HSV-1), also rely on cellular AKT-mTORC1 signaling to achieve viral latency. Here, we define a novel genotoxic response whereby spatially separated signals initiated by extracellular neurotrophic factors and nuclear DNA damage are integrated by the AKT-mTORC1 pathway. We demonstrate that endogenous DNA double-strand breaks (DSBs) mediated by Topoisomerase 2ß-DNA cleavage complex (TOP2ßcc) intermediates are required to achieve AKT-mTORC1 signaling and maintain HSV-1 latency in neurons. Suppression of host DNA-repair pathways that remove TOP2ßcc trigger HSV-1 reactivation. Moreover, perturbation of AKT phosphorylation dynamics by downregulating the PHLPP1 phosphatase led to AKT mis-localization and disruption of DSB-induced HSV-1 reactivation. Thus, the cellular genome integrity and environmental inputs are consolidated and co-opted by a latent virus to balance lifelong infection with transmission.
Assuntos
DNA Topoisomerases Tipo II/genética , Herpesvirus Humano 1/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-akt/genética , Latência Viral/genética , Animais , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Herpesvirus Humano 1/patogenicidade , Humanos , Proteína Homóloga a MRE11/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Neurônios/metabolismo , Neurônios/virologia , Fosforilação , Ratos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genéticaRESUMO
Hippocampal CA1 pyramidal neurons, a major component of the medial temporal lobe memory circuit, are selectively vulnerable during the progression of Alzheimer's disease (AD). The cellular mechanism(s) underlying degeneration of these neurons and the relationship to cognitive performance remains largely undefined. Here, we profiled neurotrophin and neurotrophin receptor gene expression within microdissected CA1 neurons along with regional hippocampal dissections from subjects who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), or AD using laser capture microdissection (LCM), custom-designed microarray analysis, and qPCR of CA1 subregional dissections. Gene expression levels were correlated with cognitive test scores and AD neuropathology criteria. We found a significant downregulation of several neurotrophin genes (e.g., Gdnf, Ngfb, and Ntf4) in CA1 pyramidal neurons in MCI compared to NCI and AD subjects. In addition, the neurotrophin receptor transcripts TrkB and TrkC were decreased in MCI and AD compared to NCI. Regional hippocampal dissections also revealed select neurotrophic gene dysfunction providing evidence for vulnerability within the hippocampus proper during the progression of dementia. Downregulation of several neurotrophins of the NGF family and cognate neurotrophin receptor (TrkA, TrkB, and TrkC) genes correlated with antemortem cognitive measures including the Mini-Mental State Exam (MMSE), a composite global cognitive score (GCS), and Episodic, Semantic, and Working Memory, Perceptual Speed, and Visuospatial domains. Significant correlations were found between select neurotrophic expression downregulation and neuritic plaques (NPs) and neurofibrillary tangles (NFTs), but not diffuse plaques (DPs). These data suggest that dysfunction of neurotrophin signaling complexes have profound negative sequelae within vulnerable hippocampal cell types, which play a role in mnemonic and executive dysfunction during the progression of AD.
Assuntos
Doença de Alzheimer/patologia , Disfunção Cognitiva/patologia , Hipocampo/patologia , Fatores de Crescimento Neural/metabolismo , Células Piramidais/patologia , Receptores de Fator de Crescimento Neural/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Disfunção Cognitiva/metabolismo , Progressão da Doença , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Células Piramidais/metabolismoRESUMO
The exponential increase in methylphenidate (MPH) prescriptions in recent years has worried researchers about its misuse among individuals who do not meet the full diagnostic criteria for attention-deficit/hyperactivity disorder (ADHD) such as young children and students in search of cognitive improvement or for recreational reasons. The action of MPH is based mainly on inhibition of dopamine transporter, but the complete cellular effects are still unknown. Based upon prior studies, we attempted to determine whether the treatment with MPH (1µM) influences protein kinase B-mammalian target of rapamycin complex 1 signaling pathways (Akt-mTOR), including translation repressor protein (4E-BP1) and mitogen activated protein kinase (S6K), in rat pheochromocytoma cells (PC12), a well characterized cellular model, in a long or short term. MPH effects on the Akt substrates [cAMP response element-binding protein (CREB), forkhead box protein O1 (FoxO1), and glycogen synthase kinase 3 beta (GSK-3ß)] were also evaluated. Whereas short term MPH treatment decreased the pAkt/Akt, pmTOR/mTOR and pS6K/S6K ratios, as well as pFoxO1 immunocontent in PC12 cells, long term treatment increased pAkt/Akt, pmTOR/mTOR and pGSK-3ß/GSK-3ß ratio. Phosphorylation levels of 4E-BP1 were decreased at 15 and 30 min and increased at 1 and 6 h by MPH. pCREB/CREB ratio was decreased. This study shows that the Akt-mTOR pathway, as well as other important Akt substrates which have been described as important regulators of protein synthesis, as well as being implicated in cellular survival, synaptic plasticity and memory consolidation, was affected by MPH in PC12 cells, representing an important step in exploring the MPH effects.
Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Metilfenidato/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , Células PC12 , Fosforilação/efeitos dos fármacos , RatosRESUMO
Proper development of the nervous system requires a temporally and spatially orchestrated set of events including differentiation, synapse formation and neurotransmission. Nerve growth factor (NGF) acting through the TrkA neurotrophin receptor (also known as NTRK1) regulates many of these events. However, the molecular mechanisms responsible for NGF-regulated secretion are not completely understood. Here, we describe a new signaling pathway involving TrkA, ARMS (also known as Kidins220), synembryn-B and Rac1 in NGF-mediated secretion in PC12 cells. Whereas overexpression of ARMS blocked NGF-mediated secretion, without affecting basal secretion, a decrease in ARMS resulted in potentiation. Similar effects were observed with synembryn-B, a protein that interacts directly with ARMS. Downstream of ARMS and synembryn-B are Gαq and Trio proteins, which modulate the activity of Rac1 in response to NGF. Expression of dominant-negative Rac1 rescued the secretion defects of cells overexpressing ARMS or synembryn-B. Thus, this neurotrophin pathway represents a new mechanism responsible for NGF-regulated secretion.
Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Membrana/metabolismo , Fator de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Animais , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Camundongos , Fator de Crescimento Neural/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Células PC12 , Fosfoproteínas/genética , Ratos , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismoRESUMO
The p75 neurotrophin receptor (p75(NTR)) is a multifunctional receptor that participates in many critical processes in the nervous system, ranging from apoptosis to synaptic plasticity and morphological events. It is a member of the tumor necrosis factor receptor (TNFR) superfamily, whose members undergo trimeric oligomerization. Interestingly, p75(NTR) interacts with dimeric ligands (i.e., proneurotrophins or mature neurotrophins), but several of the intracellular adaptors that mediate p75(NTR) signaling are trimeric (i.e., TNFR-associated factor 6 or TRAF6). Consequently, the active receptor signaling unit remains uncertain. To identify the functional receptor complex, we evaluated its oligomerization in vitro and in mice brain tissues using a combination of biochemical techniques. We found that the most abundant homotypic arrangement for p75(NTR) is a trimer and that monomers and trimers coexist at the cell surface. Interestingly, trimers are not required for ligand-independent or ligand-dependent p75(NTR) activation in a growth cone retraction functional assay. However, monomers are capable of inducing acute morphological effects in neurons. We propose that p75(NTR) activation is regulated by its oligomerization status and its levels of expression. These results indicate that the oligomeric state of p75(NTR) confers differential responses and offers an explanation for the diverse and contradictory actions of this receptor in the nervous system. SIGNIFICANCE STATEMENT: The p75 neurotrophin receptor (p75(NTR)) regulates a wide range of cellular functions, including apoptosis, neuronal processes remodeling, and synaptic plasticity. The goal of our work was to inquire whether oligomers of the receptor are required for function. Here we report that p75(NTR) predominantly assembles as a trimer, similar to other tumor necrosis factor receptors. Interestingly, monomers and trimers coexist at the cell surface, but trimers are not required for p75(NTR) activation in a functional assay. However, monomers are capable of inducing acute morphological effects in neurons. Identification of the oligomerization state of p75(NTR) begins to provide insights to the mechanisms of signal initiation of this noncatalytic receptor, as well as to develop therapeutic interventions to diminish its activity.
Assuntos
Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/química , Receptores de Fator de Crescimento Neural/biossíntese , Receptores de Fator de Crescimento Neural/química , Animais , Células Cultivadas , Córtex Cerebral/metabolismo , Feminino , Células HEK293 , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Células PC12 , Ratos , Receptores de Fator de Crescimento Neural/genética , EstereoisomerismoRESUMO
Glioblastoma multiforme (GBM) is a deadly primary brain malignancy. Glioblastoma stem cells (GSC), which have the ability to self-renew and differentiate into tumor lineages, are believed to cause tumor recurrence due to their resistance to current therapies. A subset of GSCs is marked by cell surface expression of CD133, a glycosylated pentaspan transmembrane protein. The study of CD133-expressing GSCs has been limited by the relative paucity of genetic tools that specifically target them. Here, we present CD133-LV, a lentiviral vector presenting a single chain antibody against CD133 on its envelope, as a vehicle for the selective transduction of CD133-expressing GSCs. We show that CD133-LV selectively transduces CD133+ human GSCs in dose-dependent manner and that transduced cells maintain their stem-like properties. The transduction efficiency of CD133-LV is reduced by an antibody that recognizes the same epitope on CD133 as the viral envelope and by shRNA-mediated knockdown of CD133. Conversely, the rate of transduction by CD133-LV is augmented by overexpression of CD133 in primary human GBM cultures. CD133-LV selectively transduces CD133-expressing cells in intracranial human GBM xenografts in NOD.SCID mice, but spares normal mouse brain tissue, neurons derived from human embryonic stem cells and primary human astrocytes. Our findings indicate that CD133-LV represents a novel tool for the selective genetic manipulation of CD133-expressing GSCs, and can be used to answer important questions about how these cells contribute to tumor biology and therapy resistance.
Assuntos
Antígenos CD/imunologia , Neoplasias Encefálicas/patologia , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Glioblastoma/patologia , Glicoproteínas/imunologia , Células-Tronco Neoplásicas/patologia , Peptídeos/imunologia , Transdução Genética , Antígeno AC133 , Animais , Antígenos CD/análise , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Glioblastoma/genética , Glioblastoma/imunologia , Glicoproteínas/análise , Humanos , Lentivirus/genética , Lentivirus/imunologia , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Peptídeos/análise , Células Tumorais CultivadasRESUMO
The tropomyosin-related tyrosine kinase (Trk) receptors were initially described as a family of growth factor receptors required for neuronal survival. They have since been shown to influence many aspects of neuronal development and function, including differentiation, outgrowth, and synaptic plasticity. This chapter will give an overview on the biology of Trk receptors within the nervous system. The structure and downstream signaling pathways of the full-length receptors will be described, as well as the biological functions of their truncated isoforms. Finally, the role of Trk receptors in the nervous system in health and disease will be discussed.
Assuntos
Receptor trkA/fisiologia , Receptor trkB/fisiologia , Receptor trkC/fisiologia , Animais , Transporte Axonal , Humanos , Plasticidade Neuronal , Receptor trkA/química , Receptor trkB/química , Receptor trkC/química , Transdução de SinaisRESUMO
Although antipsychotic drugs can reduce psychotic behavior within a few hours, full efficacy is not achieved for several weeks, implying that there may be rapid, short-term changes in neuronal function, which are consolidated into long-lasting changes. We showed that the antipsychotic drug haloperidol, a dopamine receptor type 2 (D2R) antagonist, stimulated the kinase Akt to activate the mRNA translation pathway mediated by the mammalian target of rapamycin complex 1 (mTORC1). In primary striatal D2R-positive neurons, haloperidol-mediated activation of mTORC1 resulted in increased phosphorylation of ribosomal protein S6 (S6) and eukaryotic translation initiation factor 4E-binding protein (4E-BP). Proteomic mass spectrometry revealed marked changes in the pattern of protein synthesis after acute exposure of cultured striatal neurons to haloperidol, including increased abundance of cytoskeletal proteins and proteins associated with translation machinery. These proteomic changes coincided with increased morphological complexity of neurons that was diminished by inhibition of downstream effectors of mTORC1, suggesting that mTORC1-dependent translation enhances neuronal complexity in response to haloperidol. In vivo, we observed rapid morphological changes with a concomitant increase in the abundance of cytoskeletal proteins in cortical neurons of haloperidol-injected mice. These results suggest a mechanism for both the acute and long-term actions of antipsychotics.
Assuntos
Antipsicóticos/farmacologia , Complexos Multiproteicos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos , Animais , Células Cultivadas , Haloperidol/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/metabolismo , Neurônios/citologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismoRESUMO
A common single-nucleotide polymorphism (SNP) in the human brain-derived neurotrophic factor (BDNF) gene results in a Val66Met substitution in the BDNF prodomain region. This SNP is associated with alterations in memory and with enhanced risk to develop depression and anxiety disorders in humans. Here we show that the isolated BDNF prodomain is detected in the hippocampus and that it can be secreted from neurons in an activity-dependent manner. Using nuclear magnetic resonance spectroscopy and circular dichroism, we find that the prodomain is intrinsically disordered, and the Val66Met substitution induces structural changes. Surprisingly, application of Met66 (but not Val66) BDNF prodomain induces acute growth cone retraction and a decrease in Rac activity in hippocampal neurons. Expression of p75(NTR) and differential engagement of the Met66 prodomain to the SorCS2 receptor are required for this effect. These results identify the Met66 prodomain as a new active ligand, which modulates neuronal morphology.
Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Cones de Crescimento/metabolismo , Hipocampo/metabolismo , Polimorfismo de Nucleotídeo Único , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Embrião de Mamíferos , Escherichia coli/genética , Regulação da Expressão Gênica no Desenvolvimento , Cones de Crescimento/patologia , Células HEK293 , Hipocampo/crescimento & desenvolvimento , Hipocampo/patologia , Humanos , Espectroscopia de Ressonância Magnética , Memória/fisiologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
BACKGROUND: Angelman syndrome (AS) is a human neuropsychiatric disorder associated with autism, mental retardation, motor abnormalities, and epilepsy. In most cases, AS is caused by the deletion of the maternal copy of UBE3A gene, which encodes the enzyme ubiquitin ligase E3A, also termed E6-AP. A mouse model of AS has been generated and these mice exhibit many of the observed neurological alterations in humans. Because of clinical and neuroanatomical similarities between AS and schizophrenia, we examined AS model mice for alterations in the neuregulin-ErbB4 pathway, which has been implicated in the pathophysiology of schizophrenia. We focused our studies on the hippocampus, one of the major brain loci impaired in AS mice. METHODS: We determined the expression of neuregulin 1 and ErbB4 receptors in AS mice and wild-type littermates (ages 10-16 weeks) and studied the effects of ErbB inhibition on long-term potentiation in hippocampal area cornu ammonis 1 and on hippocampus-dependent contextual fear memory. RESULTS: We observed enhanced neuregulin-ErbB4 signaling in the hippocampus of AS model mice and found that ErbB inhibitors could reverse deficits in long-term potentiation, a cellular substrate for learning and memory. In addition, we found that an ErbB inhibitor enhanced long-term contextual fear memory in AS model mice. CONCLUSIONS: Our findings suggest that neuregulin-ErbB4 signaling is involved in synaptic plasticity and memory impairments in AS model mice, suggesting that ErbB inhibitors have therapeutic potential for the treatment of AS.
Assuntos
Síndrome de Angelman/psicologia , Medo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Transtornos da Memória/psicologia , Proteínas Oncogênicas v-erbB/antagonistas & inibidores , Animais , Western Blotting , Canais de Cloreto/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/psicologia , Fenômenos Eletrofisiológicos , Espaço Extracelular/efeitos dos fármacos , Imunoprecipitação , Camundongos , Camundongos Transgênicos , Neuregulina-1/fisiologia , Receptores de AMPA/biossíntese , Receptores de N-Metil-D-Aspartato/biossíntese , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Ubiquitina-Proteína Ligases/antagonistas & inibidoresRESUMO
HYPOTHESIS: Reactivation of herpes simplex virus type 1 (HSV-1) in geniculate ganglion neurons (GGNs) is an etiologic mechanism of Bell's palsy (BP) and delayed facial palsy (DFP) after otologic surgery. BACKGROUND: Several clinical studies, including temporal bone studies, antibody, titers, and intraoperative studies, suggest that reactivation of HSV-1 from latently infected GGNs may lead to both BP and DFP. However, it is difficult to study these processes in humans or live animals. METHODS: Primary cultures of GGNs were latently infected with Patton strain HSV-1 expressing a green fluorescent protein-late lytic gene chimera. Four days later, these cultures were treated with trichostatin A (TSA), a known chemical reactivator of HSV-1 in other neurons. Cultures were monitored daily by fluorescent microscopy. Titers of media from lytic, latent, and latent/TSA treated GGN cultures were obtained using plaque assays on Vero cells. RNA was harvested from latently infected GGN cultures and examined for the presence of viral transcripts using reverse transcription-polymerase chain reaction. RESULTS: Latently infected GGN cultures displayed latency-associated transcripts only, whereas lytically infected and reactivated latent cultures produced other viral transcripts, as well. The GGN cultures displayed a reactivation rate of 65% after treatment with TSA. Media from latently infected cultures contained no detectable infectious HSV-1, whereas infectious virus was observed in both lytically and latently infected/TSA-treated culture media. CONCLUSION: We have shown that cultured GGNs can be latently infected with HSV-1, and HSV-1 in these latently infected neurons can be reactivated using TSA, yielding infectious virus. These results have implications for the cause of both BP and DFP.
Assuntos
Paralisia Facial/etiologia , Paralisia Facial/virologia , Herpesvirus Humano 1 , Animais , Paralisia de Bell/etiologia , Paralisia de Bell/prevenção & controle , Paralisia de Bell/virologia , Células Cultivadas , Chlorocebus aethiops , Meios de Cultura , Paralisia Facial/prevenção & controle , Gânglio Geniculado/citologia , Gânglio Geniculado/virologia , Proteínas de Fluorescência Verde , Microscopia de Fluorescência , Neurônios/virologia , RNA Viral/biossíntese , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Gênica , Células Vero , Ativação Viral , Latência Viral/genéticaRESUMO
The pathogenic model of Alzheimer's disease (AD) posits that aggregates of amyloid ß, a product of amyloid precursor protein (APP) processing, cause dementia. However, alterations of normal APP functions could contribute to AD pathogenesis, and it is therefore important to understand the role of APP. APP is a member of a gene family that shows functional redundancy as documented by the evidence that single knock-out mice are viable, whereas mice with combined deletions of APP family genes die shortly after birth. A residue in the APP intracellular region, Y(682), is indispensable for these essential functions of APP. It is therefore important to identify pathways that regulate phosphorylation of Y(682) as well as the role of Y(682) in vivo. TrkA is associated with both phosphorylation of APP-Y(682) and alteration of APP processing, suggesting that tyrosine phosphorylation of APP links APP processing and neurotrophic signaling to intracellular pathways associated with cellular differentiation and survival. Here we have tested whether the NGF/TrkA signaling pathway is a physiological regulator of APP phosphorylation. We find that NGF induces tyrosine phosphorylation of APP, and that APP interacts with TrkA and this interaction requires Y(682). Unpredictably, we also uncover that APP, and specifically Y(682), regulates activation of the NGF/TrkA signaling pathway in vivo, the subcellular distribution of TrkA and the sensitivity of neurons to the trophic action of NGF. This evidence suggests that these two membrane protein's functions are strictly interconnected and that the NGF/TrkA signaling pathway is involved in AD pathogenesis and can be used as a therapeutic target.
Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Fator de Crescimento Neural/metabolismo , Receptor trkA/fisiologia , Transdução de Sinais/fisiologia , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/fisiologia , Animais , Células Cultivadas , Feminino , Hipocampo/metabolismo , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fator de Crescimento Neural/fisiologia , Fosforilação/fisiologia , Receptor trkA/metabolismo , Tirosina/fisiologiaRESUMO
Tropomyosin-related kinase B receptor (TrkB) is a neurotrophin receptor important for the synaptic plasticity underlying hippocampal-dependent learning and memory. Because this receptor is widely expressed in hippocampal neurons, the precise location of TrkB activation is likely important for its specific actions. The goal of this study was to identify the precise sites of TrkB activation in the mouse hippocampal formation and to determine any changes in the distribution of activated TrkB under conditions of enhanced brain-derived neurotrophic factor (BDNF) expression and hippocampal excitability. Using electron microscopy, we localized TrkB phosphorylated at tyrosine 816 (pTrkB) in the hippocampal formation of male and female mice under conditions of naturally low circulating estradiol and naturally high circulating estradiol, when BDNF expression, TrkB signaling, and synaptic plasticity are enhanced. To compare relative amounts of pTrkB in each group, we counted profiles containing pTrkB-immunoreactivity (pTrkB-ir) in all hippocampal subregions. pTrkB-ir was in axons, axon terminals, dendrites, and dendritic spines of neurons in the hippocampal formation, but the majority of pTrkB-ir localized to presynaptic profiles. pTrkB-ir also was abundant in glial profiles, which were further identified as microglia using immunofluorescence and confocal microscopy. Axonal and glial pTrkB-ir and pTrkB-ir in the CA1 stratum radiatum were more abundant in high-estradiol states (proestrus females) than low-estradiol states (estrus and diestrus females and males). These findings suggest that presynaptic TrkB is positioned to modulate estradiol-mediated and BDNF-dependent synaptic plasticity. Furthermore, they suggest a novel role for TrkB in microglial function in the neuroimmune system.
Assuntos
Ciclo Estral/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Fosforilação/fisiologia , Receptor trkB/metabolismo , Análise de Variância , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Microscopia Eletrônica , Microscopia de Fluorescência , Plasticidade Neuronal/fisiologia , Ratos , Ratos Sprague-Dawley , Fatores Sexuais , Sinapses/metabolismoRESUMO
Fluorescent dextran tracers of varying sizes have been used to assess paranodal permeability in myelinated sciatic nerve fibers from control and three "myelin mutant" mice, Caspr-null, cst-null, and shaking. We demonstrate that in all of these the paranode is permeable to small tracers (3 kDa and 10 kDa), which penetrate most fibers, and to larger tracers (40 kDa and 70 kDa), which penetrate far fewer fibers and move shorter distances over longer periods of time. Despite gross diminution in transverse bands (TBs) in the Caspr-null and cst-null mice, the permeability of their paranodal junctions is equivalent to that in controls. Thus, deficiency of TBs in these mutants does not increase the permeability of their paranodal junctions to the dextrans we used, moving from the perinodal space through the paranode to the internodal periaxonal space. In addition, we show that the shaking mice, which have thinner myelin and shorter paranodes, show increased permeability to the same tracers despite the presence of TBs. We conclude that the extent of penetration of these tracers does not depend on the presence or absence of TBs but does depend on the length of the paranode and, in turn, on the length of "pathway 3," the helical extracellular pathway that passes through the paranode parallel to the lateral edge of the myelin sheath.
Assuntos
Bainha de Mielina/genética , Nós Neurofibrosos/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/genética , Cistatinas/genética , Dextranos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos/genética , Microscopia Eletrônica de Transmissão/métodos , Peso Molecular , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/ultraestrutura , Permeabilidade , Nós Neurofibrosos/ultraestrutura , Nervo Isquiático/citologia , Nervo Isquiático/metabolismo , Nervo Isquiático/ultraestruturaRESUMO
Upon activation by nerve growth factor (NGF), TrkA is internalized, trafficked and sorted through different endosomal compartments. Proper TrkA trafficking and sorting are crucial events as alteration of these processes hinders NGF-mediated functions. However, it is not fully known which proteins are involved in the trafficking and sorting of TrkA. Here we report that Nedd4-2 regulates the trafficking of TrkA and NGF functions in sensory neurons. Depletion of Nedd4-2 disrupts the correct sorting of activated TrkA at the early and late endosome stages, resulting in an accumulation of TrkA in these compartments and, as a result of the reduced trafficking to the degradative pathway, TrkA is either reverted to the cell surface through the recycling pathway or retrogradely transported to the cell body. In addition, Nedd4-2 depletion enhances TrkA signaling and the survival of NGF-dependent dorsal root ganglion neurons, but not those of brain-derived neurotrophic factor-dependent neurons. Furthermore, neurons from a knock-in mouse expressing a TrkA mutant that does not bind Nedd4-2 protein exhibit increased NGF-mediated signaling and cell survival. Our data indicate that TrkA trafficking and sorting are regulated by Nedd4-2 protein.
Assuntos
Fator de Crescimento Neural/metabolismo , Receptor trkA/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Membrana Celular/metabolismo , Sobrevivência Celular , Células Cultivadas , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Gânglios Espinais/enzimologia , Gânglios Espinais/metabolismo , Técnicas de Introdução de Genes , Camundongos , Ubiquitina-Proteína Ligases Nedd4 , Transporte Proteico , Ratos , Receptor trkA/genética , Células Receptoras Sensoriais/enzimologia , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Transport of mRNAs to diverse neuronal locations via RNA granules serves an important function in regulating protein synthesis within restricted sub-cellular domains. We recently detected the Huntington's disease protein huntingtin (Htt) in dendritic RNA granules; however, the functional significance of this localization is not known. Here we report that Htt and the huntingtin-associated protein 1 (HAP1) are co-localized with the microtubule motor proteins, the KIF5A kinesin and dynein, during dendritic transport of ß-actin mRNA. Live cell imaging demonstrated that ß-actin mRNA is associated with Htt, HAP1, and dynein intermediate chain in cultured neurons. Reduction in the levels of Htt, HAP1, KIF5A, and dynein heavy chain by lentiviral-based shRNAs resulted in a reduction in the transport of ß-actin mRNA. These findings support a role for Htt in participating in the mRNA transport machinery that also contains HAP1, KIF5A, and dynein.
Assuntos
Actinas/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Animais , Transporte Biológico Ativo , Encéfalo/metabolismo , Células Cultivadas , Grânulos Citoplasmáticos/metabolismo , Dendritos/metabolismo , Dineínas/antagonistas & inibidores , Dineínas/genética , Dineínas/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Proteína Huntingtina , Cinesinas/antagonistas & inibidores , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Modelos Neurológicos , Proteínas Motores Moleculares/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Wistar , Transdução de SinaisRESUMO
Herpes simplex virus-1 (HSV-1) establishes life-long latency in peripheral neurons where productive replication is suppressed. While periodic reactivation results in virus production, the molecular basis of neuronal latency remains incompletely understood. Using a primary neuronal culture system of HSV-1 latency and reactivation, we show that continuous signaling through the phosphatidylinositol 3-kinase (PI3-K) pathway triggered by nerve growth factor (NGF)-binding to the TrkA receptor tyrosine kinase (RTK) is instrumental in maintaining latent HSV-1. The PI3-K p110α catalytic subunit, but not the ß or δ isoforms, is specifically required to activate 3-phosphoinositide-dependent protein kinase-1 (PDK1) and sustain latency. Disrupting this pathway leads to virus reactivation. EGF and GDNF, two other growth factors capable of activating PI3-K and PDK1 but that differ from NGF in their ability to persistently activate Akt, do not fully support HSV-1 latency. Thus, the nature of RTK signaling is a critical host parameter that regulates the HSV-1 latent-lytic switch.