Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Sci ; 20(11): 4424-4437, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247809

RESUMO

Prostate cancer presents as an immunologically "cold" malignancy, characterized by a lack of response to immunotherapy in the majority of patients. The dysfunction of prostate tumor metabolism is recognized as a critical factor in immune evasion, resulting in reduced effectiveness of immunotherapeutic interventions. Despite this awareness, the precise molecular mechanisms underpinning metabolic dysregulation in prostate cancer and its intricate relationship with immune evasion remain incompletely elucidated. In this study, we introduce the multi-drug resistance protein ABCC4/MRP4 as a key player prominently expressed in prostate cancer, exerting a pivotal role in suppressing the activity of intratumoral CD8+ T cells. Depletion of ABCC4 in prostate cancer cells halts the release of prostaglandin E2 (PGE2), a molecule that diminishes the population of CD8+ T cells and curtails their cytotoxic capabilities. Conversely, constraining the activation of PGE2 signaling in CD8+ T cells effectively improved the efficacy of prostate cancer treatment with PD-1 blockade. During this process, downregulation of the JAK1-STAT3 pathway and depolarization of mitochondria emerge as crucial factors contributing to T cell anergy. Collectively, our research identifies the ABCC4-PGE2 axis as a promising target for reversing dysfunction within tumor-infiltrating lymphocytes (TILs) and augmenting the suboptimal responsiveness to immunotherapy in prostate cancer.


Assuntos
Linfócitos T CD8-Positivos , Dinoprostona , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Neoplasias da Próstata , Masculino , Neoplasias da Próstata/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Dinoprostona/metabolismo , Humanos , Receptor de Morte Celular Programada 1/metabolismo , Linhagem Celular Tumoral , Animais , Camundongos
2.
Sci Rep ; 14(1): 22064, 2024 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333312

RESUMO

Protein Disulfide-Isomerase A2 (PDIA2) is a gene that encodes proteins, responsible for protein folding and modification within cells. The development and course of many disorders are intimately linked to the aberrant expression of PDIA2. Nevertheless, more research is necessary to fully understand PDIA2's biological significance in pan-cancer, notably in prostate cancer (PCa). PDIA2 expression is elevated in various tumors and closely related to patient prognosis. Patients with prostate cancer who express PDIA2 high in particular have a bad prognosis in terms of progression-free survival. In addition, the upregulation of PDIA2 expression in prostate cancer patients is accompanied by higher Gleason scores, advanced tumor staging, lymph node metastasis, and elevated PSA levels. Detailed experiments further demonstrate that PDIA2 is a carcinogenic gene affecting prostate cancer cells' response to dasatinib therapy. For patients with prostate cancer, there is a clear positive connection between the expression level of PDIA2 and a bad prognosis. The prostate cancer treatment efficacy of dasatinib is hampered by PDIA2, which is intimately linked to the growth, invasion, and metastasis of PCa cells. In summary, our research highlights the potential of PDIA2 as a biomarker for the diagnosis and management of PCa.


Assuntos
Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata , Isomerases de Dissulfetos de Proteínas , Humanos , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Prognóstico , Linhagem Celular Tumoral , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Regulação para Baixo
3.
Transl Androl Urol ; 13(7): 1219-1227, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39100834

RESUMO

Background: Multiparametric magnetic resonance imaging (mpMRI) is a commonly used method to diagnose pelvic lymph node metastasis (PLNM) in prostate cancer (PCa) patients, but there are few comparative studies on mpMRI and 68Ga-prostate-specific membrane antigen (PSMA) positron emission tomography (PET)/computed tomography (CT) in locally advanced PCa (LAPC) patients. Therefore, we designed a retrospective study to compare the diagnostic value of 68Ga-PSMA PET/CT and mpMRI for PLNM of LAPC. Methods: A retrospective study was performed on 50 patients with LAPC who underwent radical prostatectomy (RP) in Tongji Hospital from 2021 to 2023. All patients underwent PET/CT and mpMRI examination, and were diagnosed as LAPC before surgery, followed by robot-assisted laparoscopic prostatectomy or laparoscopic RP and extended pelvic lymph node dissection (ePLND). Routine postoperative pathological examination was performed. According to the results, the sensitivity, specificity, positive predictive value, and negative predictive value of 68Ga-PSMA PET/CT and mpMRI for the diagnosis of PLNM of LAPC were compared. Results: Among the 50 patients, the mean age was 65.5±10.3 years, the preoperative total serum prostate-specific antigen (PSA) was 30.7±12.3 ng/mL, and the Gleason score was 7 [7, 8]. The difference in diagnostic efficacy between 68Ga-PSMA PET/CT and mpMRI in the preoperative diagnosis of PLNM of PCa was determined by postoperative pathological results. Based on the number of patients who developed PLNM, the sensitivity, specificity, positive predictive value, and negative predictive value of 68Ga-PSMA PET/CT were as follows: 93.75%, 100.00%, 100.00%, 97.14%, and 68.75%, 97.06%, 91.67%, 86.84% for mpMRI, respectively. Based on the number of pelvic metastatic lymph nodes, the sensitivity, specificity, positive predictive value, and negative predictive value of 68Ga-PSMA PET/CT were 95.24%, 100.00%, 100.00%, 99.48%, and 65.08%, 99.13%, 89.13%, 96.30% for mpMRI, respectively. It turned out that PET/CT was more sensitive than mpMRI in detecting PLNM of PCa, and the difference was statistically significant. Conclusions: 68Ga-PSMA PET/CT is more sensitive than mpMRI in the detection of PLNM in patients with LAPC. It is a promising method in the diagnosis and preoperative assessment of PLNM in LAPC.

4.
Urolithiasis ; 52(1): 89, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874782

RESUMO

To investigate the feasibility of conventional (basketing + dusting) and Moses (pop-dusting) holmium lasers during flexible ureteroscopy (FURS) in the treatment of 2-3 cm renal calculi and to compare the efficiency and safety of the two methods, a total of 230 patients with 2-3 cm kidney stones who underwent FURS were randomly divided into the conventional group and the Moses group. The mode of lithotripsy in the conventional group was fragmentation and dusting. The mode of lithotripsy in the Moses group was dusting and pop-dusting. Clinical and perioperative variables and complications were compared between the two cohorts. Multivariate analyses of factors contributing to the stone-free rate (SFR) and operation time were performed. No statistically significant differences were found in the demographics, renal stone-related data, SFR, or complications between the cohorts. The laser energy was higher in the Moses cohort than in the conventional cohort (119.3 ± 15.2 vs. 92.8 ± 15.1 kJ; P < 0.001), and the operation time was shorter in the Moses cohort than in the conventional cohort (99.5 ± 18.9 vs. 105.3 ± 13.7 min; P = 0.009). When there was isolated stone, the operation time was shorter in the Moses cohort than in the conventional cohort (99.6 ± 17.5 vs. 111.4 ± 10.7 min; P < 0.001), while there was no significant difference between the two cohorts when there were multiple stones (99.5 ± 20 vs. 101.2 ± 14 min; P = 0.415). Multivariate analyses found that an increase in stone volume can decrease the SFR and prolong the operation time, and use of a Moses laser can shorten the operation time. Both holmium laser modes during FURS can effectively treat 2-3 cm renal calculi. The Moses mode is recommended as the first choice for the treatment of isolated 2-3 cm renal stones. When treating multiple stones, the efficiency of these two laser modalities is the same. TRIAL REGISTRATION: ChiCTR2200056091.


Assuntos
Cálculos Renais , Lasers de Estado Sólido , Litotripsia a Laser , Duração da Cirurgia , Ureteroscopia , Humanos , Ureteroscopia/métodos , Ureteroscopia/efeitos adversos , Ureteroscopia/instrumentação , Cálculos Renais/cirurgia , Lasers de Estado Sólido/uso terapêutico , Feminino , Masculino , Pessoa de Meia-Idade , Litotripsia a Laser/métodos , Litotripsia a Laser/instrumentação , Litotripsia a Laser/efeitos adversos , Adulto , Resultado do Tratamento , Estudos de Viabilidade , Idoso
5.
Medicina (Kaunas) ; 60(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792963

RESUMO

Background and Objectives: Connexin 43 (Cx43) is involved in the transfer of small signaling molecules between neighboring cells, thereby exerting a major influence on the initiation and progression of tumorigenesis. However, there is a lack of systematic research on Cx43 expression and its predictive role in clinical diagnosis and prognosis in pan-cancer. Materials and Methods: Several biological databases were used to evaluate the expression levels of GJA1 (encoding Cx43) and its diagnostic and prognostic significance in pan-cancer. We targeted kidney renal clear cell carcinoma (KIRC) and investigated the relationship between GJA1 expression and different clinical features of KIRC patients. Then, we performed cell-based experiments to partially confirm our results and predicted several proteins that were functionally related to Cx43. Results: The expression of GJA1 has a high level of accuracy in predicting KIRC. High GJA1 expression was remarkably correlated with a favorable prognosis, and this expression was reduced in groups with poor clinical features in KIRC. Cell experiments confirmed the inhibitory effects of increased GJA1 expression on the migratory capacity of human renal cancer (RCC) cell lines, and protein-protein interaction (PPI) analysis predicted that CDH1 and CTNNB1 were closely related to Cx43. Conclusions: GJA1 could be a promising independent favorable prognostic factor for KIRC, and upregulation of GJA1 expression could inhibit the migratory capacity of renal cancer cells.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Renais , Conexina 43 , Neoplasias Renais , Humanos , Conexina 43/análise , Conexina 43/metabolismo , Neoplasias Renais/genética , Biomarcadores Tumorais/análise , Prognóstico , beta Catenina , Linhagem Celular Tumoral , Masculino , Feminino
6.
Cancer Cell ; 42(4): 701-719.e12, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593782

RESUMO

Co-occurrence and mutual exclusivity of genomic alterations may reflect the existence of genetic interactions, potentially shaping distinct biological phenotypes and impacting therapeutic response in breast cancer. However, our understanding of them remains limited. Herein, we investigate a large-scale multi-omics cohort (n = 873) and a real-world clinical sequencing cohort (n = 4,405) including several clinical trials with detailed treatment outcomes and perform functional validation in patient-derived organoids, tumor fragments, and in vivo models. Through this comprehensive approach, we construct a network comprising co-alterations and mutually exclusive events and characterize their therapeutic potential and underlying biological basis. Notably, we identify associations between TP53mut-AURKAamp and endocrine therapy resistance, germline BRCA1mut-MYCamp and improved sensitivity to PARP inhibitors, and TP53mut-MYBamp and immunotherapy resistance. Furthermore, we reveal that precision treatment strategies informed by co-alterations hold promise to improve patient outcomes. Our study highlights the significance of genetic interactions in guiding genome-informed treatment decisions beyond single driver alterations.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Genômica , Resultado do Tratamento , Fenótipo , Mutação
7.
Biomed Environ Sci ; 37(1): 42-53, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38326720

RESUMO

Objective: This study aimed to investigate the effect and underlying mechanism of Fructus lycii in improving exercise fatigue. Methods: A network pharmacological approach was used to explore potential mechanisms of action of Fructus lycii. Skeletal muscle C2C12 cells and immunofluorescence were employed to verify the effect and mechanism of the representative components in Fructus lycii predicted by network pharmacological analysis. Results: Six potential active components, namely quercetin, ß-sitosterol, stigmasterol, 7-O-methylluteolin-6-C-beta-glucoside_qt, atropine, and glycitein, were identified to have potency in improving exercise fatigue via multiple pathways, such as the PI3K-Akt, neuroactive ligand-receptor interaction, IL-17, TNF, and MAPK signaling pathways. The immunofluorescence results indicated that quercetin, a significant active component in Fructus lycii, increased the mean staining area of 2-NBDG, TMRM, and MitoTracker, and decreased the area of CellRox compared to the control. Furthermore, the protein expression levels of p-38 MAPK, p-MAPK, p-JNK, p-PI3K, and p-AKT markedly increased after quercetin treatment. Conclusion: Fructus lycii might alleviate exercise fatigue through multiple components and pathways. Among these, quercetin appears to improve exercise fatigue by enhancing energy metabolism and reducing oxidative stress. The PI3K-AKT and MAPK signaling pathways also appear to play a role in this process.


Assuntos
Medicamentos de Ervas Chinesas , Quercetina , Humanos , Quercetina/farmacologia , Quercetina/uso terapêutico , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fadiga/tratamento farmacológico
8.
Cell Res ; 34(1): 58-75, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38168642

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive disease characterized by remarkable intratumor heterogeneity (ITH), which poses therapeutic challenges. However, the clinical relevance and key determinant of ITH in TNBC are poorly understood. Here, we comprehensively characterized ITH levels using multi-omics data across our center's cohort (n = 260), The Cancer Genome Atlas cohort (n = 134), and four immunotherapy-treated cohorts (n = 109). Our results revealed that high ITH was associated with poor patient survival and immunotherapy resistance. Importantly, we identified zinc finger protein 689 (ZNF689) deficiency as a crucial determinant of ITH formation. Mechanistically, the ZNF689-TRIM28 complex was found to directly bind to the promoter of long interspersed element-1 (LINE-1), inducing H3K9me3-mediated transcriptional silencing. ZNF689 deficiency reactivated LINE-1 retrotransposition to exacerbate genomic instability, which fostered ITH. Single-cell RNA sequencing, spatially resolved transcriptomics and flow cytometry analysis confirmed that ZNF689 deficiency-induced ITH inhibited antigen presentation and T-cell activation, conferring immunotherapy resistance. Pharmacological inhibition of LINE-1 significantly reduced ITH, enhanced antitumor immunity, and eventually sensitized ZNF689-deficient tumors to immunotherapy in vivo. Consistently, ZNF689 expression positively correlated with favorable prognosis and immunotherapy response in clinical samples. Altogether, our study uncovers a previously unrecognized mechanism underlying ZNF689 deficiency-induced ITH and suggests LINE-1 inhibition combined with immunotherapy as a novel treatment strategy for TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Imunoterapia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia , Fatores de Transcrição/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética
9.
J Transl Med ; 22(1): 104, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279172

RESUMO

Prostate cancer (PCa) is one of the most common malignant tumors affecting the male genitourinary system. However, there is currently a lack of effective treatments for patients with advanced prostate cancer, which significantly impacts men's overall health. Exonuclease 1 (EXO1), a protein with mismatch repair and recombination functions, has been found to play a vital role in various diseases. In our study, we discovered that EXO1 acts as a novel biomarker of PCa, which promotes prostate cancer progression by regulating lipid metabolism reprogramming in prostate cancer cells. Mechanistically, EXO1 promotes the expression of SREBP1 by inhibiting the P53 signaling pathway. In summary, our findings suggest that EXO1 regulated intracellular lipid reprogramming through the P53/SREBP1 axis, thus promoting PCa progression. The result could potentially lead to new insights and therapeutic targets for diagnosing and treating PCa.


Assuntos
Neoplasias da Próstata , Proteína Supressora de Tumor p53 , Humanos , Masculino , Proteína Supressora de Tumor p53/metabolismo , Metabolismo dos Lipídeos , Neoplasias da Próstata/patologia , Lipídeos , Exodesoxirribonucleases/metabolismo , Enzimas Reparadoras do DNA
10.
World J Gastrointest Oncol ; 15(11): 1936-1950, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38077650

RESUMO

BACKGROUND: Dopamine and cyclic adenosine monophosphate (cAMP)-regulated phosphoprotein with an apparent Mr of 32000 (DARPP-32) is a protein that is involved in regulating dopamine and cAMP signaling pathways in the brain. However, recent studies have shown that DARPP-32 is also expressed in other tissues, including colorectal cancer (CRC), where its function is not well understood. AIM: To explore the effect of DARPP-32 on CRC progression. METHODS: The expression levels of DARPP-32 were assessed in CRC tissues using both quantitative polymerase chain reaction and immunohistochemistry assays. The proliferative capacity of CRC cell lines was evaluated with Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays, while apoptosis was measured by flow cytometry. The migratory and invasive potential of CRC cell lines were determined using wound healing and transwell chamber assays. In vivo studies involved monitoring the growth rate of xenograft tumors. Finally, the underlying molecular mechanism of DARPP-32 was investigated through RNA-sequencing and western blot analyses. RESULTS: DARPP-32 was frequently upregulated in CRC and associated with abnormal clinicopathological features in CRC. Overexpression of DARPP-32 was shown to promote cancer cell proliferation, migration, and invasion and reduce apoptosis. DARPP-32 knockdown resulted in the opposite functional effects. Mechanistically, DARPP-32 may regulate the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway in order to carry out its biological function. CONCLUSION: DARPP-32 promotes CRC progression via the PI3K/AKT signaling pathway.

11.
Medicina (Kaunas) ; 59(12)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38138301

RESUMO

Context: Several recent randomized controlled trials (RCTs) have reported on the survival benefits of poly (ADP-ribose) polymerase inhibitors (PARPi) compared to standard-of-care (SOC) treatment (enzalutamide, abiraterone, or docetaxel) in patients with metastatic castration-resistant prostate cancer (mCRPC). However, there is a limited integrated analysis of high-quality evidence comparing the efficacy and safety of PARPi and SOC treatments in this context. Objective: This study aims to comprehensively analyze the survival benefits and adverse events associated with PARPi and SOC treatments through a head-to-head meta-analysis in mCRPC. Evidence acquisition: A systematic review search was conducted in PubMed, Embase, Clinical trials, and the Central Cochrane Registry in July 2023. RCTs were assessed following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. The systematic review was prospectively registered on PROSPERO (CRD42023441034). Evidence synthesis: A total of 8 studies, encompassing 2341 cases in the PARPi treatment arm and 1810 cases in the controlled arm, were included in the qualitative synthesis. The hazard ratio (HR) for radiographic progression-free survival (rPFS) and overall survival (OS) were 0.74 (95% CI, 0.61-0.90) and 0.89 (95% CI, 0.80-0.99), respectively, in the intention-to-treatment patients. For subgroup analysis, HRs for rPFS and OS in the BRCA-mutated subgroup were 0.39 (95% CI, 0.28-0.55) and 0.62 (95% CI, 0.38-0.99), while in the HRR-mutated subgroup, HR for rPFS was 0.57 (95% CI, 0.48-0.69) and for OS was 0.77 (95% CI, 0.64-0.93). The odds ratio (OR) for all grades of adverse events (AEs) and AEs with severity of at least grade 3 were 3.86 (95% CI, 2.53-5.90) and 2.30 (95% CI, 1.63-3.26), respectively. Conclusions: PARP inhibitors demonstrate greater effectiveness than SOC treatments in HRR/BRCA-positive patients with mCRPC. Further research is required to explore ways to reduce adverse event rates and investigate the efficacy of HRR/BRCA-negative patients.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/efeitos adversos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Ribose/uso terapêutico , Intervalo Livre de Doença , Ensaios Clínicos Controlados Aleatórios como Assunto
12.
Chin Med J (Engl) ; 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37997674

RESUMO

BACKGROUND: Although some well-established oncogenes are involved in cancer initiation and progression such as prostate cancer (PCa), the long tail of cancer genes remains to be defined. Goosecoid (GSC) has been implicated in cancer development. However, the comprehensive biological role of GSC in pan-cancer, specifically in PCa, remains unexplored. The aim of this study was to investigate the role of GSC in PCa development. METHODS: We performed a systematic bioinformatics exploration of GSC using datasets from The Cancer Genome Atlas, Genotype-Tissue Expression, Gene Expression Omnibus, German Cancer Research Center, and our in-house cohorts. First, we evaluated the expression of GSC and its association with patient prognosis, and identified GSC-relevant genetic alterations in cancers. Further, we focused on the clinical characterization and prognostic analysis of GSC in PCa. To understand the transcriptional regulation of GSC by E2F transcription factor 1 (E2F1), we performed chromatin immunoprecipitation quantitative polymerase chain reaction (qPCR). Functional experiments were conducted to validate the effect of GSC on the tumor cellular phenotype and sensitivity to trametinib. RESULTS: GSC expression was elevated in various tumors and significantly correlated with patient prognosis. The alterations of GSC contribute to the progression of various tumors especially in PCa. Patients with PCa and high GSC expression exhibited worse progression-free survival and biochemical recurrence outcomes. Further, GSC upregulation in patients with PCa was mostly accompanied with higher Gleason score, advanced tumor stage, lymph node metastasis, and elevated prostate-specific antigen (PSA) levels. Mechanistically, the transcription factor, E2F1, stimulates GSC by binding to its promoter region. Detailed experiments further demonstrated that GSC acted as an oncogene and influenced the response of PCa cells to trametinib treatment. CONCLUSIONS: GSC was highly overexpressed and strongly correlated with patient prognosis in PCa. We found that GSC, regulated by E2F1, acted as an oncogene and impeded the therapeutic efficacy of trametinib in PCa.

13.
Biochem Pharmacol ; 217: 115811, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37717692

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is considered one of the most aggressive solid tumours in humans. Despite its high mortality rate, effective targeted therapeutic strategies remain limited due to incomplete understanding of the underlying biological mechanisms. The NAP1L gene family has been implicated in the development and progression of various human tumours. However, the specific function and role of NAP1L5 (nucleosome assembly protein-like 5) in PDAC have not been fully elucidated. Therefore, in this study, we aimed to investigate the role of NAP1L5 in PDAC and explore the regulatory relationship between NAP1L5 and its potential downstream molecule PHLPP1 (PH domain Leucine-rich repeat Protein Phosphatase 1) in PDAC. Our study revealed that NAP1L5 is notably upregulated in PDAC. Moreover, both in vivo and in vitro experiments demonstrated that knockdown of NAP1L5 suppressed the proliferation of PDAC cells. Mechanistically, NAP1L5 was found to promote PDAC progression by activating the AKT/mTOR signalling pathway in a PHLPP1-dependent manner. Specifically, NAP1L5 binds to PHLPP1 and facilitates the ubiquitination-mediated degradation of PHLPP1, ultimately resulting in reduced PHLPP1 expression. Notably, TRIM29, recruited by NAP1L5, was found to be involved in facilitating K48-linked ubiquitination of PHLPP1. Our findings indicate that NAP1L5 overexpression promotes the proliferation of PDAC cells by inhibiting PHLPP1 expression. These novel insights suggest that NAP1L5 may serve as a potential therapeutic target for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Transdução de Sinais , Ubiquitinação , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias Pancreáticas
14.
Adv Sci (Weinh) ; 10(27): e2301975, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37526345

RESUMO

The Warburg effect-related metabolic dysfunction of the tricarboxylic acid (TCA) cycle has emerged as a hallmark of various solid tumors, particularly renal cell carcinoma (RCC). RCC is characterized by high immune infiltration and thus recommended for immunotherapeutic interventions at an advanced stage in clinical guidelines. Nevertheless, limited benefits of immunotherapy have prompted investigations into underlying mechanisms, leading to the proposal of metabolic dysregulation-induced immunoevasion as a crucial contributor. In this study, a significant decrease is found in the abundance of alpha-ketoglutarate (αKG), a crucial intermediate metabolite in the TCA cycle, which is correlated with higher grades and a worse prognosis in clinical RCC samples. Elevated levels of αKG promote major histocompatibility complex-I (MHC-I) antigen processing and presentation, as well as the expression of ß2-microglobulin (B2M). While αKG modulates broad-spectrum demethylation activities of histone, the transcriptional upregulation of B2M is dependent on the demethylation of H3K4me1 in its promoter region. Furthermore, the combination of αKG supplementation and PD-1 blockade leads to improved therapeutic efficacy and prolongs survival in murine models when compared to monotherapy. Overall, the findings elucidate the mechanisms of immune evasion in anti-tumor immunotherapies and suggest a potential combinatorial treatment strategy in RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Camundongos , Carcinoma de Células Renais/terapia , Carcinoma de Células Renais/patologia , Receptor de Morte Celular Programada 1 , Ácidos Cetoglutáricos , Neoplasias Renais/terapia , Imunoterapia
15.
J Transl Med ; 21(1): 146, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829161

RESUMO

BACKGROUND: Kidney cancer undergoes a dramatic metabolic shift and has demonstrated responsiveness to immunotherapeutic intervention. However, metabolic classification and the associations between metabolic alterations and immune infiltration in Renal cell carcinoma still remain elucidative. METHODS: Unsupervised consensus clustering was conducted on the TCGA cohorts for metabolic classification. GESA, mRNAsi, prognosis, clinical features, mutation load, immune infiltration and differentially expressed gene differences among different clusters were compared. The prognosis model and nomograms were constructed based on metabolic gene signatures and verified using external ICGC datasets. Immunohistochemical results from Human Protein Atlas database and Tongji hospital were used to validate gene expression levels in normal tissues and tumor samples. CCK8, apoptosis analysis, qPCR, subcutaneously implanted murine models and flowcytometry analysis were applied to investigate the roles of ACAA2 in tumor progression and anti-tumor immunity. RESULTS: Renal cell carcinoma was classified into 3 metabolic subclusters and the subcluster with low metabolic profiles displayed the poorest prognosis, highest invasiveness and AJCC grade, enhanced immune infiltration but suppressive immunophenotypes. ACAA2, ACAT1, ASRGL1, AKR1B10, ABCC2, ANGPTL4 were identified to construct the 6 gene-signature prognosis model and verified both internally and externally with ICGC cohorts. ACAA2 was demonstrated as a tumor suppressor and was associated with higher immune infiltration and elevated PD-1 expression of CD8+ T cells. CONCLUSIONS: Our research proposed a new metabolic classification method for RCC and revealed intrinsic associations between metabolic phenotypes and immune profiles. The identified gene signatures might serve as key factors bridging tumor metabolism and tumor immunity and warrant further in-depth investigations.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Animais , Camundongos , Linfócitos T CD8-Positivos , Apoptose , Análise por Conglomerados , Prognóstico , Microambiente Tumoral
16.
PeerJ ; 11: e14784, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36785707

RESUMO

Clear cell renal cell carcinoma (ccRCC) is considered to be related to the worse prognosis, which might in part be attributed to the early recurrence and metastasis, compared with other type of kidney cancer. Oxidative stress refers to an imbalance between production of oxidants and antioxidant defense. Accumulative studies have indicated that oxidative stress genes contribute to the tumor invasion, metastasis and drug sensitivity. However, the biological functions of oxidative stress genes in ccRCC remain largely unknown. In this study, we identified 1,399 oxidative stress genes from GeneCards with a relevance score ≥7. Data for analysis were accessed from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) database, and were utilized as training set and validation set respectively. Univariate Cox analysis, least absolute shrinkage and selection operator (LASSO) Cox regression and multivariate Cox were employed to construct a prognostic signature in ccRCC. Finally, a prognostic signature including four different oxidative stress genes was constructed from 1,399 genes, and its predictive performance was verified through Kaplan-Meier survival analysis and the receiver operating characteristic (ROC) curve. Interestingly, we found that there was significant correlation between the expression of oxidative stress genes and the immune infiltration and the sensitivity of tumor cells to chemotherapeutics. Moreover, the highest hazard ratio gene urocortin (UCN) was chosen for further study; some necessary vitro experiments proved that the UCN could promote the ability of ccRCC proliferation and migration and contribute to the degree of oxidative stress. In conclusion, it was promising to predict the prognosis of ccRCC through the four oxidative stress genes signature. UCN played oncogenic roles in ccRCC by influencing proliferation and oxidative stress pathway, which was expected to be the novel therapeutic target for ccRCC.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Prognóstico , Neoplasias Renais/genética , Estresse Oxidativo/genética
17.
Phytomedicine ; 99: 154015, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35278901

RESUMO

BACKGROUND: Breast cancer is one of the malignant tumors with the highest morbidity and mortality rate. Numerous efficient anti-breast cancer drugs are being derived from the development of natural products. Voacamine (VOA), a bisindole alkaloid isolated from Voacanga africana Stapf, possesses various pharmacological and biological activities. PURPOSE: In this study, we investigated the efficacy of VOA against breast cancer cells and elucidated the underlying mechanisms in vitro and in vivo. METHODS: Human breast cancer cell line MCF-7 and mouse breast cancer cell line 4T1 were used to study the underlying anti-cancer mechanisms of VOA. The proliferation was detected by MTT, colony formation, cell proliferation and wound-healing migration assays. Flow cytometry was utilized to determine the level of reactive oxygen species (ROS) cell-cycle, apoptosis and mitochondrial membrane potential. The target proteins were analyzed by Western blot. Molecular docking was performed and scored by AutoDock. Subcutaneous cancer models in mice were established to evaluate the anticancer effects in vivo. RESULT: Our results demonstrated that VOA selectively suppressed breast cancer MCF-7 and 4T1 cells proliferation with IC50 values of 0.99 and 1.48 µM, and significantly inhibited the migration and colony formation of tumor cells. Furthermore, the cell cycle was arrested in the S phase with the decreased expression levels of CDK2, Cyclin A and Cyclin E. Additionally, exposure to VOA dose-dependently brought about dose-dependently the loss of mitochondrial membrane potential (Δψm) and amassment of reactive oxygen species (ROS), resulting in the initiation of the intrinsic apoptotic pathway. Western blot analysis unveiled that VOA significantly activated mitochondrial-associated apoptosis and obviously suppress the PI3K/Akt/mTOR pathway via modulation of related protein expression levels in both tumor cell lines. In tumor-bearing mouse models, administration of VOA dose-dependently inhibited the tumor growth without causing apparent toxicities. CONCLUSION: These findings revealed the novel properties of VOA in promoting apoptosis of breast cancer cells by activating mitochondrial-associated apoptosis signaling pathway and inhibiting PI3K/Akt/mTOR signaling pathway and significantly decreasing tumor size without detecting appreciable toxicity. In summary, the present results demonstrated VOA could be an encouraging drug candidate to cure breast cancer, exhibiting an effective method to exploit unique drugs from natural components.

18.
JHEP Rep ; 4(4): 100446, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35284810

RESUMO

Background & Aims: The truncating mutations in tight junction protein 2 (TJP2) cause progressive cholestasis, liver failure, and hepatocyte carcinogenesis. Due to the lack of effective model systems, there are no targeted medications for the liver pathology with TJP2 deficiency. We leveraged the technologies of patient-specific induced pluripotent stem cells (iPSC) and CRISPR genome-editing, and we aim to establish a disease model which recapitulates phenotypes of patients with TJP2 deficiency. Methods: We differentiated iPSC to hepatocyte-like cells (iHep) on the Transwell membrane in a polarized monolayer. Immunofluorescent staining of polarity markers was detected by a confocal microscope. The epithelial barrier function and bile acid transport of bile canaliculi were quantified between the two chambers of Transwell. The morphology of bile canaliculi was measured in iHep cultured in the Matrigel sandwich system using a fluorescent probe and live-confocal imaging. Results: The iHep differentiated from iPSC with TJP2 mutations exhibited intracellular inclusions of disrupted apical membrane structures, distorted canalicular networks, altered distribution of apical and basolateral markers/transporters. The directional bile acid transport of bile canaliculi was compromised in the mutant hepatocytes, resembling the disease phenotypes observed in the liver of patients. Conclusions: Our iPSC-derived in vitro hepatocyte system revealed canalicular membrane disruption in TJP2 deficient hepatocytes and demonstrated the ability to model cholestatic disease with TJP2 deficiency to serve as a platform for further pathophysiologic study and drug discovery. Lay summary: We investigated a genetic liver disease, progressive familial intrahepatic cholestasis (PFIC), which causes severe liver disease in newborns and infants due to a lack of gene called TJP2. By using cutting-edge stem cell technology and genome editing methods, we established a novel disease modeling system in cell culture experiments. Our experiments demonstrated that the lack of TJP2 induced abnormal cell polarity and disrupted bile acid transport. These findings will lead to the subsequent investigation to further understand disease mechanisms and develop an effective treatment.

19.
J Orthop Surg Res ; 17(1): 137, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246197

RESUMO

BACKGROUND: Bone marrow mesenchymal stem cells have always been a heated research topic in bone tissue regeneration and repair because of their self-renewal and multi-differentiation potential. A large number of studies have been focused on finding the inducing factors that will promote the osteogenic differentiation of bone marrow mesenchymal stem cells. Previous studies have shown that macrophage exosomes or miRNA-26a-5p can make it work, but the function of this kind of substance on cell osteogenic differentiation has not been public. METHODS: M2 macrophages are obtained from IL-4 polarized bone marrow-derived macrophages. Exosomes were isolated from the supernatant of M2 macrophages and identified via transmission electron microscopy (TEM), western blotting, and DLS. Chondrogenic differentiation potential was detected by Alcian blue staining. Oil red O staining was used to detect the potential for lipogenic differentiation. And MTT would detect the proliferative capacity of cells. Western blot was performed to detect differential expression of osteogenic differentiation-related proteins. RESULTS: The results showed that M2 macrophage exosomes will promote bone differentiation and at the same time inhibit lipid differentiation. In addition, M2 macrophage-derived exosomes have the function of promoting the expression of SOX and Aggrecan suppressing the level of MMP13. The exosome inhibitor GW4689 suppresses miRNA-26a-5p in M2 macrophage exosomes, and the treated exosomes do not play an important role in promoting bone differentiation. Moreover, miRNA-26a-5p can enable to promote bone differentiation and inhibit lipid differentiation. miRNA-26a-5p can promote the expression of ALP (alkaline phosphatase), RUNX-2 (Runt-related transcription factor 2), OPN(osteopontin), and Col-2(collagen type II). Therefore, it is speculated that exosomal miRNA-26a-5p is indispensable in osteogenic differentiation. CONCLUSIONS: The present study indicated that M2 macrophage exosomes carrying miRNA-26a-5p can induce osteogenic differentiation of bone marrow-derived stem cells to inhibit lipogenic differentiation, and miRNA-26a-5p will also promote the expression of osteogenic differentiation-related proteins ALP, RUNX-2, OPN, and Col-2.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteogênese/genética , Diferenciação Celular , Humanos , Lipídeos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
20.
Biomed Res Int ; 2021: 7218067, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926690

RESUMO

Macrophages are commonly classified as M1 macrophages or M2 macrophages. M2 macrophages are obtained by stimulation of IL-4 with anti-inflammatory and tissue repair effects. Exosomes are 30-150 nm lipid bilayer membrane vesicles derived from most living cells and have a variety of biological functions. Previous studies have shown that macrophage exosomes can influence the course of some autoimmune diseases, but their effect on knee osteoarthritis (KOA) has not been reported. Here, we analyze the roles of exosomes derived from M2 macrophage phenotypes in KOA rats. Exosomes were isolated from the supernatant of M2 macrophages and identified via transmission electron microscopy (TEM), Western blotting, and DLS. The results showed that M2 macrophage exosomes significantly attenuated the inflammatory response and pathological damage of articular cartilage in KOA rats. In addition, a key protein associated with KOA including Aggrecan, Col-10, SOX6, and Runx2 was significantly increased, while MMP-13 was significantly suppressed following treatment with M2 macrophage exosomes. The present study indicated that M2 macrophage exosomes exerted protective effects on KOA rats mainly mediated by the PI3K/AKT/mTOR signal pathway. These findings provide a novel approach for the treatment of KOA.


Assuntos
Exossomos/metabolismo , Macrófagos/metabolismo , Osteoartrite do Joelho/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Modelos Animais de Doenças , Inflamação/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA