Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 382(2): 233-245, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35680376

RESUMO

Diabetes is associated with increased cardiac injury and sudden death. Nicotinamide phosphoribosyltransferase (Nampt) is an essential enzyme for the NAD+ salvage pathway and is dysregulated in diabetes. Nampt activation results in rescued NADH/NAD+ ratios and provides pharmacological changes necessary for diabetic cardioprotection. Computer docking shows that 1-(3,6-Dibromo-carbazol-9-yl)-3-phenylamino-propan-2-ol (P7C3) allows for enhanced Nampt dimerization and association. To test the pharmacological application, we used male leptin receptor-deficient (db/db) mice and treated them with Nampt activator P7C3. The effects of 4-week P7C3 treatment on cardiac function were evaluated along with molecular signaling changes for phosphorylated protein kinase B (p-AKT), phosphorylated endothelial nitric oxide synthase (p-eNOS), and sirtuin 1 (SIRT1). The cardiac function evaluated by ECG and echocardiography were significantly improved after 4 weeks of P7C3 treatment. Biochemically, higher NADH/NAD+ ratios in diabetic hearts were rescued by P7C3 treatment. Moreover, activities of Nampt and SIRT1 were significantly increased in P7C3-treated diabetic hearts. P7C3 treatment significantly decreased the blood glucose in diabetic mice with 4-week treatment as noted by glucose tolerance test and fasting blood glucose measurements compared with vehicle-treated mice. P7C3 activated Nampt enzymatic activity both in vitro and in the 4-week diabetic mouse hearts, demonstrating the specificity of the small molecule. P7C3 treatment significantly enhanced the expression of cardioprotective signaling of p-AKT, p-eNOS, and Beclin 1 in diabetic hearts. Nampt activator P7C3 allows for decreased infarct size with decreased Troponin I and lactose dehydrogenase (LDH) release, which is beneficial to the heart. Overall, the present study shows that P7C3 activates Nampt and SIRT1 activity and decreases NADH/NAD+ ratio, resulting in improved biochemical signaling providing cardioprotection. SIGNIFICANCE STATEMENT: This study shows that 1-(3,6-Dibromo-carbazol-9-yl)-3-phenylamino-propan-2-ol (P7C3) is effective in treating diabetes and cardiovascular diseases. The novel small molecule is antiarrhythmic and improves the ejection fraction in diabetic hearts. The study successfully demonstrated that P7C3 decreases the infarct size in hearts during myocardial infarction and ischemia-reperfusion injury. Biochemical and cellular signaling show increased NAD+ levels, along with Nampt activity involved in upregulating protective signaling in the diabetic heart. P7C3 has high therapeutic potential for rescuing heart disease.


Assuntos
Diabetes Mellitus Experimental , Infarto do Miocárdio , Animais , Glicemia , Carbazóis , Citocinas/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Masculino , Camundongos , Infarto do Miocárdio/tratamento farmacológico , NAD/metabolismo , Nicotinamida Fosforribosiltransferase , Proteínas Proto-Oncogênicas c-akt , Sirtuína 1/metabolismo
2.
J Cachexia Sarcopenia Muscle ; 13(2): 1177-1196, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35060352

RESUMO

BACKGROUND: Nicotinamide phosphoribosyltransferase (Nampt), a key enzyme in NAD salvage pathway is decreased in metabolic diseases, and its precise role in skeletal muscle function is not known. We tested the hypothesis, Nampt activation by P7C3 (3,6-dibromo-α-[(phenylamino)methyl]-9H-carbazol-9-ethanol) ameliorates diabetes and muscle function. METHODS: We assessed the functional, morphometric, biochemical, and molecular effects of P7C3 treatment in skeletal muscle of type 2 diabetic (db/db) mice. Nampt+/- mice were utilized to test the specificity of P7C3. RESULTS: Insulin resistance increased 1.6-fold in diabetic mice compared with wild-type mice and after 4 weeks treatment with P7C3 rescued diabetes (P < 0.05). In the db-P7C3 mice fasting blood glucose levels decreased to 0.96-fold compared with C57Bl/6J wild-type naïve control mice. The insulin and glucose tolerance tests blood glucose levels were decreased to 0.6-fold and 0.54-folds, respectively, at 120 min along with an increase in insulin secretion (1.76-fold) and pancreatic ß-cells (3.92-fold) in db-P7C3 mice. The fore-limb and hind-limb grip strengths were increased to 1.13-fold and 1.17-fold, respectively, together with a 14.2-fold increase in voluntary running wheel distance in db-P7C3 mice. P7C3 treatment resulted in a 1.4-fold and 7.1-fold increase in medium-sized and larger-sized myofibres cross-sectional area, with a concomitant 0.5-fold decrease in smaller-sized myofibres of tibialis anterior (TA) muscle. The transmission electron microscopy images also displayed a 1.67-fold increase in myofibre diameter of extensor digitorum longus muscle along with 2.9-fold decrease in mitochondrial area in db-P7C3 mice compared with db-Veh mice. The number of SDH positive myofibres were increased to 1.74-fold in db-P7C3 TA muscles. The gastrocnemius and TA muscles displayed a decrease in slow oxidative myosin heavy chain type1 (MyHC1) myofibres expression (0.46-fold) and immunostaining (6.4-fold), respectively. qPCR analysis displayed a 2.9-fold and 1.3-fold increase in Pdk4 and Cpt1, and 0.55-fold and 0.59-fold decrease in Fgf21 and 16S in db-P7C3 mice. There was also a 3.3-fold and 1.9-fold increase in Fabp1 and CD36 in db-Veh mice. RNA-seq differential gene expression volcano plot displayed 1415 genes to be up-regulated and 1726 genes down-regulated (P < 0.05) in db-P7C3 mice. There was 1.02-fold increase in serum HDL, and 0.9-fold decrease in low-density lipoprotein/very low-density lipoprotein ratio in db-P7C3 mice. Lipid profiling of gastrocnemius muscle displayed a decrease in inflammatory lipid mediators n-6; AA (0.83-fold), and n-3; DHA (0.69-fold) and EPA (0.81-fold), and a 0.66-fold decrease in endocannabinoid 2-AG and 2.0-fold increase in AEA in db-P7C3 mice. CONCLUSIONS: Overall, we demonstrate that P7C3 activates Nampt, improves type 2 diabetes and skeletal muscle function in db/db mice.


Assuntos
Carbazóis , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animais , Carbazóis/farmacologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Lipídeos , Camundongos , Músculo Esquelético , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo
3.
Pediatr Res ; 79(6): 951-61, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26859364

RESUMO

BACKGROUND: Necrotizing enterocolitis (NEC) is an inflammatory bowel necrosis of premature infants. Based on our recent findings of increased Smad7 expression in surgically resected bowel affected by NEC, we hypothesized that NEC macrophages undergo inflammatory activation because increased Smad7 expression renders these cells resistant to normal, gut-specific, transforming growth factor (TGF)-ß-mediated suppression of inflammatory pathways. METHODS: We used surgically resected human NEC tissue, murine models of NEC-like injury, bone marrow-derived and intestinal macrophages, and RAW264.7 cells. Smad7 and IκB kinase-beta (IKK-ß) were measured by quantitative PCR, western blots, and immunohistochemistry. Promoter activation was confirmed in luciferase reporter and chromatin immunoprecipitation assays. RESULTS: NEC macrophages showed increased Smad7 expression, particularly in areas with severe tissue damage and high bacterial load. Lipopolysaccharide-induced Smad7 expression suppressed TGF-ß signaling and augmented nuclear factor-kappa B (NF-κB) activation and cytokine production in macrophages. Smad7-mediated NF-κB activation was likely mediated via increased expression of IKK-ß, which, further increased Smad7 expression in a feed-forward loop. We show that Smad7 induced IKK-ß expression through direct binding to the IKK-ß promoter and its transcriptional activation. CONCLUSION: Smad7 expression in NEC macrophages interrupts TGF-ß signaling and promotes NF-κB-mediated inflammatory signaling in these cells through increased expression of IKK-ß.


Assuntos
Enterocolite Necrosante/metabolismo , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Proteína Smad7/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Humanos , Quinase I-kappa B/metabolismo , Inflamação , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Células RAW 264.7 , Transdução de Sinais
4.
PLoS One ; 8(4): e60545, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23573265

RESUMO

Diabetes is a metabolic disorder that ultimately results in major pathophysiological complications in the cardiovascular system. Diabetics are predisposed to higher incidences of sudden cardiac deaths (SCD). Several studies have associated diabetes as a major underlying risk for heart diseases and its complications. The diabetic heart undergoes remodeling to cope up with the underlying changes, however ultimately fails. In the present study we investigated the changes associated with a key ion channel and transcriptional factors in a diabetic heart model. In the mouse db/db model, we identified key transcriptional regulators and mediators that play important roles in the regulation of ion channel expression. Voltage-gated potassium channel (Kv4.2) is modulated in diabetes and is down regulated. We hypothesized that Kv4.2 expression is altered by potassium channel interacting protein-2 (KChIP2) which is regulated upstream by NFkB and miR-301a. We utilized qRT-PCR analysis and identified the genes that are affected in diabetes in a regional specific manner in the heart. At protein level we identified and validated differential expression of Kv4.2 and KChIP2 along with NFkB in both ventricles of diabetic hearts. In addition, we identified up-regulation of miR-301a in diabetic ventricles. We utilized loss and gain of function approaches to identify and validate the role of miR-301a in regulating Kv4.2. Based on in vivo and in vitro studies we conclude that miR-301a may be a central regulator for the expression of Kv4.2 in diabetes. This miR-301 mediated regulation of Kv4.2 is independent of NFkB and Irx5 and modulates Kv4.2 by direct binding on Kv4.2 3'untranslated region (3'-UTR). Therefore targeting miR-301a may offer new potential for developing therapeutic approaches.


Assuntos
Diabetes Mellitus/metabolismo , Cardiomiopatias Diabéticas/metabolismo , MicroRNAs/genética , Interferência de RNA , Canais de Potássio Shal/genética , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Ventrículos do Coração/metabolismo , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Miocárdio/patologia , Técnicas de Patch-Clamp , Ratos , Canais de Potássio Shal/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transcriptoma , Fator de Necrose Tumoral alfa/metabolismo , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA