Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Heart Assoc ; 3(6): e001156, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25392541

RESUMO

BACKGROUND: Brain lipoprotein metabolism is dependent on lipoprotein particles that resemble plasma high-density lipoproteins but that contain apolipoprotein (apo) E rather than apoA-I as their primary protein component. Astrocytes and microglia secrete apoE but not apoA-I; however, apoA-I is detectable in both cerebrospinal fluid and brain tissue lysates. The route by which plasma apoA-I enters the central nervous system is unknown. METHODS AND RESULTS: Steady-state levels of murine apoA-I in cerebrospinal fluid and interstitial fluid are 0.664 and 0.120 µg/mL, respectively, whereas brain tissue apoA-I is ≈10% to 15% of its levels in liver. Recombinant, fluorescently tagged human apoA-I injected intravenously into mice localizes to the choroid plexus within 30 minutes and accumulates in a saturable, dose-dependent manner in the brain. Recombinant, fluorescently tagged human apoA-I accumulates in the brain for 2 hours, after which it is eliminated with a half-life of 10.3 hours. In vitro, human apoA-I is specifically bound, internalized, and transported across confluent monolayers of primary human choroid plexus epithelial cells and brain microvascular endothelial cells. CONCLUSIONS: Following intravenous injection, recombinant human apoA-I rapidly localizes predominantly to the choroid plexus. Because apoA-I mRNA is undetectable in murine brain, our results suggest that plasma apoA-I, which is secreted from the liver and intestine, gains access to the central nervous system primarily by crossing the blood-cerebrospinal fluid barrier via specific cellular mediated transport, although transport across the blood-brain barrier may also contribute to a lesser extent.


Assuntos
Apolipoproteína A-I/administração & dosagem , Apolipoproteína A-I/farmacocinética , Barreira Hematoencefálica/metabolismo , Plexo Corióideo/metabolismo , Animais , Apolipoproteína A-I/sangue , Apolipoproteína A-I/líquido cefalorraquidiano , Apolipoproteína A-I/genética , Transporte Biológico , Permeabilidade Capilar , Células Cultivadas , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Feminino , Meia-Vida , Humanos , Injeções Intravenosas , Taxa de Depuração Metabólica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacocinética , Distribuição Tecidual
2.
Nat Commun ; 5: 4683, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25140641

RESUMO

The reaction of macromolecules such as enzymes and antibodies with cell surfaces is often an inefficient process, requiring large amounts of expensive reagent. Here we report a general method based on macromolecular crowding with a range of neutral polymers to enhance such reactions, using red blood cells (RBCs) as a model system. Rates of conversion of type A and B red blood cells to universal O type by removal of antigenic carbohydrates with selective glycosidases are increased up to 400-fold in the presence of crowders. Similar enhancements are seen for antibody binding. We further explore the factors underlying these enhancements using confocal microscopy and fluorescent recovery after bleaching (FRAP) techniques with various fluorescent protein fusion partners. Increased cell-surface concentration due to volume exclusion, along with two-dimensionally confined diffusion of enzymes close to the cell surface, appear to be the major contributing factors.


Assuntos
Sistema ABO de Grupos Sanguíneos/química , Eritrócitos/química , Excipientes/química , Glicosídeo Hidrolases/química , Dextranos/química , Difusão , Eritrócitos/citologia , Ficoll/química , Recuperação de Fluorescência Após Fotodegradação , Genes Reporter , Glicerol/química , Humanos , Hidrólise , Microscopia Confocal , Polímeros/química , Povidona/química , Proteínas Recombinantes de Fusão/química , Propriedades de Superfície
3.
Biomaterials ; 33(31): 7871-83, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22840223

RESUMO

Hyperbranched polyglycerol (HPG) and polyethylene glycol (PEG) polymers with similar hydrodynamic sizes in solution were grafted to red blood cells (RBCs) to investigate the impact of polymer architecture on the cell structure and function. The hydrodynamic sizes of polymers were calculated from the diffusion coefficients measured by pulsed field gradient NMR. The hydration of the HPG and PEG was determined by differential scanning calorimetry analyses. RBCs grafted with linear PEG had different properties compared to the compact HPG grafted RBCs. HPG grafted RBCs showed much higher electrophoretic mobility values than PEG grafted RBCs at similar grafting concentrations and hydrodynamic sizes indicating differences in the structure of the polymer exclusion layer on the cell surface. PEG grafting impacted the deformation properties of the membrane to a greater degree than HPG. The complement mediated lysis of the grafted RBCs was dependent on the type of polymer, grafting concentration and molecular size of grafted chains. At higher molecular weights and graft concentrations both HPG and PEG triggered complement activation. The magnitude of activation was higher with HPG possibly due to the presence of many hydroxyl groups per molecule. HPG grafted RBCs showed significantly higher levels of CD47 self-protein accessibility than PEG grafted RBCs at all grafting concentrations and molecular sizes. PEG grafted polymers provided, in general, a better shielding and protection to ABO and minor antigens from antibody recognition than HPG polymers, however, the compact HPGs provided greater protection of certain antigens on the RBC surface. Our data showed that HPG 20 kDa and HPG 60 kDa grafted RBCs exhibited properties that are more comparable to the native RBC than PEG 5 kDa and PEG 10 kDa grafted RBCs of comparable hydrodynamic sizes. The study shows that small compact polymers such as HPG 20 kDa have a greater potential in the generation of functional RBC for therapeutic delivery applications. The intermediate sized polymers (PEG or HPG) which showed greater antigen camouflage at lower grafting concentrations have significant potential in transfusion as universal red blood donor cells.


Assuntos
Antígeno CD47/imunologia , Proteínas do Sistema Complemento/imunologia , Citoproteção , Citotoxicidade Imunológica , Eritrócitos/citologia , Glicerol/química , Polietilenoglicóis/química , Polímeros/química , Eletroforese , Eritrócitos/imunologia , Glicocálix/metabolismo , Humanos , Hidrodinâmica , Peso Molecular , Fragilidade Osmótica , Tamanho da Partícula , Sistema do Grupo Sanguíneo Rh-Hr/imunologia , Propriedades de Superfície
4.
J Pharm Sci ; 101(2): 588-97, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21976136

RESUMO

The feasibility of generating an extended period of linear release of therapeutic proteins from photo-cross-linked, biodegradable elastomer monolithic devices in vitro has been previously demonstrated. The release is driven primarily by the osmotic pressure generated upon the dissolution of the encapsulated particles within the polymer. The osmotic pressure is provided by co-incorporation into the particle of trehalose as an osmotigen. Herein, we demonstrate that the release rate of a therapeutic protein, vascular endothelial growth factor (VEGF), by this osmotic pressure mechanism is the same in vivo as found in vitro. (125) I-VEGF was colyophilized with trehalose and serum albumin and distributed as particles throughout a photo-cross-linked elastomer composed of trimethylene carbonate, ε-caprolactone, and d,l-lactide. The release of VEGF from the device was monitored by measuring the decrease in radioactivity within the devices in vitro and within explanted devices that had been implanted subcutaneously in the dorsal area of Wistar rats. The released VEGF remained bioactive in vivo, inducing the formation of blood vessels that contained red blood cells. Furthermore, the released trehalose was well tolerated by the surrounding tissue.


Assuntos
Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Animais , Portadores de Fármacos , Técnicas In Vitro , Osmose , Ratos , Ratos Wistar
5.
J Control Release ; 145(2): 109-15, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20381557

RESUMO

The purpose of this study was to examine the potential of low molecular weight poly(trimethylene carbonate) for localized vascular endothelial growth factor (VEGF) delivery. Poly(trimethylene carbonate) of various molecular weights was prepared by ring-opening polymerization initiated by 1-octanol. The resultant polymers were liquid at room temperature with low glass transition temperatures and viscosities at 37 degrees C that permitted their injection through an 18 (1/2) G 1.5'' needle. Particles consisting of VEGF co-lyophilized with trehalose were mixed into the polymers and the rate of release of VEGF was assessed in vitro. With a 1% particle loading, VEGF was released from the polymer at a rate of 20 ng/day over a period of 3 weeks. This release behavior was independent of the molecular weight of polymer used. Increasing the VEGF content in the lyophilized particles did not increase the VEGF release rate, an effect attributed to the solubility limit of VEGF in the solution formed upon dissolution of the particles. The VEGF released retained its bioactivity at greater than 95% of that of as-lyophilized VEGF, as assessed using a human aortic endothelial cell proliferation assay. This high bioactivity was supported by in vivo release experiments, wherein VEGF containing polymer implants induced the generation of significantly greater numbers of blood vessels towards the polymer implant than controls. The blood vessels did not remain stable and were reduced in number by three weeks, due to the unsustained and low concentration of VEGF released. This formulation approach, of using a low viscosity polymer delivery vehicle, is potentially useful for localized delivery of acid-sensitive proteins, such as VEGF.


Assuntos
Dioxanos/química , Neovascularização Fisiológica , Polímeros/química , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/farmacologia , 1-Octanol , Animais , Aorta/citologia , Bovinos , Proliferação de Células/efeitos dos fármacos , Química Farmacêutica , Dioxanos/síntese química , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Liofilização , Humanos , Injeções , Masculino , Peso Molecular , Neovascularização Fisiológica/fisiologia , Polimerização , Ratos , Ratos Wistar , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Albumina Sérica/química , Albumina Sérica/genética , Solubilidade , Trealose , Fator A de Crescimento do Endotélio Vascular/química , Fatores de Crescimento do Endotélio Vascular/administração & dosagem , Fatores de Crescimento do Endotélio Vascular/química , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA